Dynamics and stability of a power-law film flowing down a slippery slope

A power-law fluid flowing down a slippery inclined plane under the action of gravity is deliberated in this research work. A Newtonian layer at a small strain rate is introduced to take care of the divergence of the viscosity at a zero strain rate. A low-dimensional two-equation model is formulated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2019-01, Vol.31 (1)
Hauptverfasser: Chakraborty, Symphony, Sheu, Tony Wen-Hann, Ghosh, Sukhendu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physics of fluids (1994)
container_volume 31
creator Chakraborty, Symphony
Sheu, Tony Wen-Hann
Ghosh, Sukhendu
description A power-law fluid flowing down a slippery inclined plane under the action of gravity is deliberated in this research work. A Newtonian layer at a small strain rate is introduced to take care of the divergence of the viscosity at a zero strain rate. A low-dimensional two-equation model is formulated using a weighted-residual approach in terms of two coupled evolution equations for the film thickness h and a local velocity amplitude or the flow rate q within the framework of lubrication theory. Moreover, a long-wave instability is shown in detail. Linear stability analysis of the proposed two-equation model reveals good agreement with the spatial Orr-Sommerfeld analysis. The influence of a wall-slip on the primary instability has been found to be non-trivial. It has the stabilizing effect at larger values of the Reynolds number, whereas at the onset of the instability, the role is destabilizing which may be because of the increase in dynamic wave speed by the wall slip. Competing impressions of shear-thinning/shear-thickening and wall slip velocity on the primary instability are captured. The impact of slip velocity on the traveling-wave solutions is discussed using the bifurcation diagram. An increasing value of the slip shows a significant effect on the traveling wave and free surface amplitude. Slip velocity controls both the kinematic and dynamic waves of the system, and thus, it has the profound passive impact on the instability.
doi_str_mv 10.1063/1.5078450
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5078450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164837984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-da23a69bb843fc9e9fdfc88b01c0c3ea646d429b6074f028be85335c4570f4073</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMouK4e_AcBTwpd33w0TY7i1woLXvQc0jSRLN2mJl1K_71dds-eZmAeZmAQuiWwIiDYI1mVUElewhlaEJCqqIQQ5wdfQSEEI5foKuctADBFxQKtX6bO7ILN2HQNzoOpQxuGCUePDe7j6FLRmhH70O6wb-MYuh_cxLGb09yGvndpmk3s3TW68KbN7uakS_T99vr1vC42n-8fz0-bwlJFh6IxlBmh6lpy5q1yyjfeSlkDsWCZM4KLhlNVC6i4ByprJ0vGSsvLCjyHii3R3bG3T_F37_Kgt3GfunlSUyK4ZJWaq5fo_kjZFHNOzus-hZ1JkyagD0dpok9HzezDkc02DGYIsfsH_gNUembs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164837984</pqid></control><display><type>article</type><title>Dynamics and stability of a power-law film flowing down a slippery slope</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chakraborty, Symphony ; Sheu, Tony Wen-Hann ; Ghosh, Sukhendu</creator><creatorcontrib>Chakraborty, Symphony ; Sheu, Tony Wen-Hann ; Ghosh, Sukhendu</creatorcontrib><description>A power-law fluid flowing down a slippery inclined plane under the action of gravity is deliberated in this research work. A Newtonian layer at a small strain rate is introduced to take care of the divergence of the viscosity at a zero strain rate. A low-dimensional two-equation model is formulated using a weighted-residual approach in terms of two coupled evolution equations for the film thickness h and a local velocity amplitude or the flow rate q within the framework of lubrication theory. Moreover, a long-wave instability is shown in detail. Linear stability analysis of the proposed two-equation model reveals good agreement with the spatial Orr-Sommerfeld analysis. The influence of a wall-slip on the primary instability has been found to be non-trivial. It has the stabilizing effect at larger values of the Reynolds number, whereas at the onset of the instability, the role is destabilizing which may be because of the increase in dynamic wave speed by the wall slip. Competing impressions of shear-thinning/shear-thickening and wall slip velocity on the primary instability are captured. The impact of slip velocity on the traveling-wave solutions is discussed using the bifurcation diagram. An increasing value of the slip shows a significant effect on the traveling wave and free surface amplitude. Slip velocity controls both the kinematic and dynamic waves of the system, and thus, it has the profound passive impact on the instability.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5078450</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplitudes ; Bifurcations ; Computational fluid dynamics ; Divergence ; Dynamic stability ; Film thickness ; Flow velocity ; Fluid dynamics ; Fluid flow ; Free surfaces ; Lubrication ; Physics ; Power law ; Reynolds number ; Slip velocity ; Slope stability ; Stability ; Stability analysis ; Strain rate ; Thickening ; Traveling waves ; Velocity ; Wall slip</subject><ispartof>Physics of fluids (1994), 2019-01, Vol.31 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-da23a69bb843fc9e9fdfc88b01c0c3ea646d429b6074f028be85335c4570f4073</citedby><cites>FETCH-LOGICAL-c292t-da23a69bb843fc9e9fdfc88b01c0c3ea646d429b6074f028be85335c4570f4073</cites><orcidid>0000-0002-6115-7859 ; 0000-0001-8757-4186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4510,27923,27924</link.rule.ids></links><search><creatorcontrib>Chakraborty, Symphony</creatorcontrib><creatorcontrib>Sheu, Tony Wen-Hann</creatorcontrib><creatorcontrib>Ghosh, Sukhendu</creatorcontrib><title>Dynamics and stability of a power-law film flowing down a slippery slope</title><title>Physics of fluids (1994)</title><description>A power-law fluid flowing down a slippery inclined plane under the action of gravity is deliberated in this research work. A Newtonian layer at a small strain rate is introduced to take care of the divergence of the viscosity at a zero strain rate. A low-dimensional two-equation model is formulated using a weighted-residual approach in terms of two coupled evolution equations for the film thickness h and a local velocity amplitude or the flow rate q within the framework of lubrication theory. Moreover, a long-wave instability is shown in detail. Linear stability analysis of the proposed two-equation model reveals good agreement with the spatial Orr-Sommerfeld analysis. The influence of a wall-slip on the primary instability has been found to be non-trivial. It has the stabilizing effect at larger values of the Reynolds number, whereas at the onset of the instability, the role is destabilizing which may be because of the increase in dynamic wave speed by the wall slip. Competing impressions of shear-thinning/shear-thickening and wall slip velocity on the primary instability are captured. The impact of slip velocity on the traveling-wave solutions is discussed using the bifurcation diagram. An increasing value of the slip shows a significant effect on the traveling wave and free surface amplitude. Slip velocity controls both the kinematic and dynamic waves of the system, and thus, it has the profound passive impact on the instability.</description><subject>Amplitudes</subject><subject>Bifurcations</subject><subject>Computational fluid dynamics</subject><subject>Divergence</subject><subject>Dynamic stability</subject><subject>Film thickness</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Free surfaces</subject><subject>Lubrication</subject><subject>Physics</subject><subject>Power law</subject><subject>Reynolds number</subject><subject>Slip velocity</subject><subject>Slope stability</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Strain rate</subject><subject>Thickening</subject><subject>Traveling waves</subject><subject>Velocity</subject><subject>Wall slip</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAYhIMouK4e_AcBTwpd33w0TY7i1woLXvQc0jSRLN2mJl1K_71dds-eZmAeZmAQuiWwIiDYI1mVUElewhlaEJCqqIQQ5wdfQSEEI5foKuctADBFxQKtX6bO7ILN2HQNzoOpQxuGCUePDe7j6FLRmhH70O6wb-MYuh_cxLGb09yGvndpmk3s3TW68KbN7uakS_T99vr1vC42n-8fz0-bwlJFh6IxlBmh6lpy5q1yyjfeSlkDsWCZM4KLhlNVC6i4ByprJ0vGSsvLCjyHii3R3bG3T_F37_Kgt3GfunlSUyK4ZJWaq5fo_kjZFHNOzus-hZ1JkyagD0dpok9HzezDkc02DGYIsfsH_gNUembs</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Chakraborty, Symphony</creator><creator>Sheu, Tony Wen-Hann</creator><creator>Ghosh, Sukhendu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6115-7859</orcidid><orcidid>https://orcid.org/0000-0001-8757-4186</orcidid></search><sort><creationdate>201901</creationdate><title>Dynamics and stability of a power-law film flowing down a slippery slope</title><author>Chakraborty, Symphony ; Sheu, Tony Wen-Hann ; Ghosh, Sukhendu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-da23a69bb843fc9e9fdfc88b01c0c3ea646d429b6074f028be85335c4570f4073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Bifurcations</topic><topic>Computational fluid dynamics</topic><topic>Divergence</topic><topic>Dynamic stability</topic><topic>Film thickness</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Free surfaces</topic><topic>Lubrication</topic><topic>Physics</topic><topic>Power law</topic><topic>Reynolds number</topic><topic>Slip velocity</topic><topic>Slope stability</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Strain rate</topic><topic>Thickening</topic><topic>Traveling waves</topic><topic>Velocity</topic><topic>Wall slip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Symphony</creatorcontrib><creatorcontrib>Sheu, Tony Wen-Hann</creatorcontrib><creatorcontrib>Ghosh, Sukhendu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Symphony</au><au>Sheu, Tony Wen-Hann</au><au>Ghosh, Sukhendu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and stability of a power-law film flowing down a slippery slope</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2019-01</date><risdate>2019</risdate><volume>31</volume><issue>1</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>A power-law fluid flowing down a slippery inclined plane under the action of gravity is deliberated in this research work. A Newtonian layer at a small strain rate is introduced to take care of the divergence of the viscosity at a zero strain rate. A low-dimensional two-equation model is formulated using a weighted-residual approach in terms of two coupled evolution equations for the film thickness h and a local velocity amplitude or the flow rate q within the framework of lubrication theory. Moreover, a long-wave instability is shown in detail. Linear stability analysis of the proposed two-equation model reveals good agreement with the spatial Orr-Sommerfeld analysis. The influence of a wall-slip on the primary instability has been found to be non-trivial. It has the stabilizing effect at larger values of the Reynolds number, whereas at the onset of the instability, the role is destabilizing which may be because of the increase in dynamic wave speed by the wall slip. Competing impressions of shear-thinning/shear-thickening and wall slip velocity on the primary instability are captured. The impact of slip velocity on the traveling-wave solutions is discussed using the bifurcation diagram. An increasing value of the slip shows a significant effect on the traveling wave and free surface amplitude. Slip velocity controls both the kinematic and dynamic waves of the system, and thus, it has the profound passive impact on the instability.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5078450</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6115-7859</orcidid><orcidid>https://orcid.org/0000-0001-8757-4186</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2019-01, Vol.31 (1)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_5078450
source AIP Journals Complete; Alma/SFX Local Collection
subjects Amplitudes
Bifurcations
Computational fluid dynamics
Divergence
Dynamic stability
Film thickness
Flow velocity
Fluid dynamics
Fluid flow
Free surfaces
Lubrication
Physics
Power law
Reynolds number
Slip velocity
Slope stability
Stability
Stability analysis
Strain rate
Thickening
Traveling waves
Velocity
Wall slip
title Dynamics and stability of a power-law film flowing down a slippery slope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20stability%20of%20a%20power-law%20film%20flowing%20down%20a%20slippery%20slope&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Chakraborty,%20Symphony&rft.date=2019-01&rft.volume=31&rft.issue=1&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5078450&rft_dat=%3Cproquest_cross%3E2164837984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164837984&rft_id=info:pmid/&rfr_iscdi=true