Measurement of coherent surface acoustic wave attenuation in polycrystalline aluminum

Attenuation of Rayleigh-type surface acoustic waves induced by grain-boundary scattering is studied experimentally and theoretically by an effective medium approach. A frequency domain opto-acoustic laboratory setup, capable of measuring a coherent Rayleigh wave response by emulating an ensemble ave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2018-12, Vol.8 (12), p.125019-125019-14
Hauptverfasser: Ryzy, Martin, Grabec, Tomáš, Österreicher, Johannes A., Hettich, Mike, Veres, István A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125019-14
container_issue 12
container_start_page 125019
container_title AIP advances
container_volume 8
creator Ryzy, Martin
Grabec, Tomáš
Österreicher, Johannes A.
Hettich, Mike
Veres, István A.
description Attenuation of Rayleigh-type surface acoustic waves induced by grain-boundary scattering is studied experimentally and theoretically by an effective medium approach. A frequency domain opto-acoustic laboratory setup, capable of measuring a coherent Rayleigh wave response by emulating an ensemble average via spatial averaging, is presented. Measurements are conducted on polycrystalline aluminum at ultrasonic frequencies from 10 MHz to 130 MHz. A constant effective phase velocity of 2893 m s−1 is found below 80 MHz. The effective attenuation coefficient varies in the whole frequency range by nearly two orders of magnitude, and shows classical scattering behavior, comprising stochastic and geometric scattering regimes. A semi-analytical attenuation model is presented, valid below the geometric limit. The model incorporates the material’s spatial two-point correlation function obtained from metallurgical micrographs. Comparisons to experimentally obtained attenuation coefficients show good quantitative agreement, with differences in the frequency power-law dependence. This study attempts to elucidate microstructure induced surface acoustic wave attenuation experimentally by means of a statistical approach. The proposed method and the obtained findings contribute to the understanding of wave propagation in heterogeneous media, and promote the use of surface acoustic waves in non-destructive microstructure characterization.
doi_str_mv 10.1063/1.5074180
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5074180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_187c0a1c756b411e96861f90dc7f1d1c</doaj_id><sourcerecordid>2159506793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3c1828c7778e88affdda098a96301ebf74168c3720027e7cae9406a67c0fb89f3</originalsourceid><addsrcrecordid>eNp9kUtLAzEQxxdRsNQe_AYLnhRaM5ttHkcpPgqKF3sO02yiW3Y3Nckq_fam3SKezGUmk9_8M48suwQyA8LoLczmhJcgyEk2KmAuprQo2Okf_zybhLAh6ZQSiChH2erFYOi9aU0Xc2dz7T6M3_spaFGbHLXrQ6x1_o1f6Raj6XqMtevyusu3rtlpvwsRm6bu0nPTt3XXtxfZmcUmmMnRjrPVw_3b4mn6_Pq4XNw9TzWVNE6pBlEIzTkXRgi0tqqQSIGSUQJmbVMvTGjKC0IKbrhGI0vCkHFN7FpIS8fZctCtHG7U1tct-p1yWKtDwPl3hT4V3xgFImUhaD5n6xLASCYYWEkqzS1UoJPW1aC19e6zNyGqjet9l8pXaX5yThiXNFHXA6W9C8Eb-_srELVfggJ1XEJibwY26DoeZvYP_AM7Q4ZK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159506793</pqid></control><display><type>article</type><title>Measurement of coherent surface acoustic wave attenuation in polycrystalline aluminum</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ryzy, Martin ; Grabec, Tomáš ; Österreicher, Johannes A. ; Hettich, Mike ; Veres, István A.</creator><creatorcontrib>Ryzy, Martin ; Grabec, Tomáš ; Österreicher, Johannes A. ; Hettich, Mike ; Veres, István A.</creatorcontrib><description>Attenuation of Rayleigh-type surface acoustic waves induced by grain-boundary scattering is studied experimentally and theoretically by an effective medium approach. A frequency domain opto-acoustic laboratory setup, capable of measuring a coherent Rayleigh wave response by emulating an ensemble average via spatial averaging, is presented. Measurements are conducted on polycrystalline aluminum at ultrasonic frequencies from 10 MHz to 130 MHz. A constant effective phase velocity of 2893 m s−1 is found below 80 MHz. The effective attenuation coefficient varies in the whole frequency range by nearly two orders of magnitude, and shows classical scattering behavior, comprising stochastic and geometric scattering regimes. A semi-analytical attenuation model is presented, valid below the geometric limit. The model incorporates the material’s spatial two-point correlation function obtained from metallurgical micrographs. Comparisons to experimentally obtained attenuation coefficients show good quantitative agreement, with differences in the frequency power-law dependence. This study attempts to elucidate microstructure induced surface acoustic wave attenuation experimentally by means of a statistical approach. The proposed method and the obtained findings contribute to the understanding of wave propagation in heterogeneous media, and promote the use of surface acoustic waves in non-destructive microstructure characterization.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5074180</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic attenuation ; Acoustic propagation ; Aluminum ; Attenuation coefficients ; Dependence ; Frequency ranges ; Metallurgy ; Microstructure ; Phase velocity ; Photomicrographs ; Polycrystals ; Rayleigh waves ; Scattering ; Surface acoustic waves ; Wave attenuation ; Wave propagation</subject><ispartof>AIP advances, 2018-12, Vol.8 (12), p.125019-125019-14</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3c1828c7778e88affdda098a96301ebf74168c3720027e7cae9406a67c0fb89f3</citedby><cites>FETCH-LOGICAL-c393t-3c1828c7778e88affdda098a96301ebf74168c3720027e7cae9406a67c0fb89f3</cites><orcidid>0000-0002-5211-8217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,2098,27911,27912</link.rule.ids></links><search><creatorcontrib>Ryzy, Martin</creatorcontrib><creatorcontrib>Grabec, Tomáš</creatorcontrib><creatorcontrib>Österreicher, Johannes A.</creatorcontrib><creatorcontrib>Hettich, Mike</creatorcontrib><creatorcontrib>Veres, István A.</creatorcontrib><title>Measurement of coherent surface acoustic wave attenuation in polycrystalline aluminum</title><title>AIP advances</title><description>Attenuation of Rayleigh-type surface acoustic waves induced by grain-boundary scattering is studied experimentally and theoretically by an effective medium approach. A frequency domain opto-acoustic laboratory setup, capable of measuring a coherent Rayleigh wave response by emulating an ensemble average via spatial averaging, is presented. Measurements are conducted on polycrystalline aluminum at ultrasonic frequencies from 10 MHz to 130 MHz. A constant effective phase velocity of 2893 m s−1 is found below 80 MHz. The effective attenuation coefficient varies in the whole frequency range by nearly two orders of magnitude, and shows classical scattering behavior, comprising stochastic and geometric scattering regimes. A semi-analytical attenuation model is presented, valid below the geometric limit. The model incorporates the material’s spatial two-point correlation function obtained from metallurgical micrographs. Comparisons to experimentally obtained attenuation coefficients show good quantitative agreement, with differences in the frequency power-law dependence. This study attempts to elucidate microstructure induced surface acoustic wave attenuation experimentally by means of a statistical approach. The proposed method and the obtained findings contribute to the understanding of wave propagation in heterogeneous media, and promote the use of surface acoustic waves in non-destructive microstructure characterization.</description><subject>Acoustic attenuation</subject><subject>Acoustic propagation</subject><subject>Aluminum</subject><subject>Attenuation coefficients</subject><subject>Dependence</subject><subject>Frequency ranges</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Phase velocity</subject><subject>Photomicrographs</subject><subject>Polycrystals</subject><subject>Rayleigh waves</subject><subject>Scattering</subject><subject>Surface acoustic waves</subject><subject>Wave attenuation</subject><subject>Wave propagation</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEQxxdRsNQe_AYLnhRaM5ttHkcpPgqKF3sO02yiW3Y3Nckq_fam3SKezGUmk9_8M48suwQyA8LoLczmhJcgyEk2KmAuprQo2Okf_zybhLAh6ZQSiChH2erFYOi9aU0Xc2dz7T6M3_spaFGbHLXrQ6x1_o1f6Raj6XqMtevyusu3rtlpvwsRm6bu0nPTt3XXtxfZmcUmmMnRjrPVw_3b4mn6_Pq4XNw9TzWVNE6pBlEIzTkXRgi0tqqQSIGSUQJmbVMvTGjKC0IKbrhGI0vCkHFN7FpIS8fZctCtHG7U1tct-p1yWKtDwPl3hT4V3xgFImUhaD5n6xLASCYYWEkqzS1UoJPW1aC19e6zNyGqjet9l8pXaX5yThiXNFHXA6W9C8Eb-_srELVfggJ1XEJibwY26DoeZvYP_AM7Q4ZK</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Ryzy, Martin</creator><creator>Grabec, Tomáš</creator><creator>Österreicher, Johannes A.</creator><creator>Hettich, Mike</creator><creator>Veres, István A.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5211-8217</orcidid></search><sort><creationdate>201812</creationdate><title>Measurement of coherent surface acoustic wave attenuation in polycrystalline aluminum</title><author>Ryzy, Martin ; Grabec, Tomáš ; Österreicher, Johannes A. ; Hettich, Mike ; Veres, István A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3c1828c7778e88affdda098a96301ebf74168c3720027e7cae9406a67c0fb89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic attenuation</topic><topic>Acoustic propagation</topic><topic>Aluminum</topic><topic>Attenuation coefficients</topic><topic>Dependence</topic><topic>Frequency ranges</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Phase velocity</topic><topic>Photomicrographs</topic><topic>Polycrystals</topic><topic>Rayleigh waves</topic><topic>Scattering</topic><topic>Surface acoustic waves</topic><topic>Wave attenuation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryzy, Martin</creatorcontrib><creatorcontrib>Grabec, Tomáš</creatorcontrib><creatorcontrib>Österreicher, Johannes A.</creatorcontrib><creatorcontrib>Hettich, Mike</creatorcontrib><creatorcontrib>Veres, István A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryzy, Martin</au><au>Grabec, Tomáš</au><au>Österreicher, Johannes A.</au><au>Hettich, Mike</au><au>Veres, István A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of coherent surface acoustic wave attenuation in polycrystalline aluminum</atitle><jtitle>AIP advances</jtitle><date>2018-12</date><risdate>2018</risdate><volume>8</volume><issue>12</issue><spage>125019</spage><epage>125019-14</epage><pages>125019-125019-14</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Attenuation of Rayleigh-type surface acoustic waves induced by grain-boundary scattering is studied experimentally and theoretically by an effective medium approach. A frequency domain opto-acoustic laboratory setup, capable of measuring a coherent Rayleigh wave response by emulating an ensemble average via spatial averaging, is presented. Measurements are conducted on polycrystalline aluminum at ultrasonic frequencies from 10 MHz to 130 MHz. A constant effective phase velocity of 2893 m s−1 is found below 80 MHz. The effective attenuation coefficient varies in the whole frequency range by nearly two orders of magnitude, and shows classical scattering behavior, comprising stochastic and geometric scattering regimes. A semi-analytical attenuation model is presented, valid below the geometric limit. The model incorporates the material’s spatial two-point correlation function obtained from metallurgical micrographs. Comparisons to experimentally obtained attenuation coefficients show good quantitative agreement, with differences in the frequency power-law dependence. This study attempts to elucidate microstructure induced surface acoustic wave attenuation experimentally by means of a statistical approach. The proposed method and the obtained findings contribute to the understanding of wave propagation in heterogeneous media, and promote the use of surface acoustic waves in non-destructive microstructure characterization.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5074180</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5211-8217</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2018-12, Vol.8 (12), p.125019-125019-14
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_1_5074180
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acoustic attenuation
Acoustic propagation
Aluminum
Attenuation coefficients
Dependence
Frequency ranges
Metallurgy
Microstructure
Phase velocity
Photomicrographs
Polycrystals
Rayleigh waves
Scattering
Surface acoustic waves
Wave attenuation
Wave propagation
title Measurement of coherent surface acoustic wave attenuation in polycrystalline aluminum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20coherent%20surface%20acoustic%20wave%20attenuation%20in%20polycrystalline%20aluminum&rft.jtitle=AIP%20advances&rft.au=Ryzy,%20Martin&rft.date=2018-12&rft.volume=8&rft.issue=12&rft.spage=125019&rft.epage=125019-14&rft.pages=125019-125019-14&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5074180&rft_dat=%3Cproquest_cross%3E2159506793%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159506793&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_187c0a1c756b411e96861f90dc7f1d1c&rfr_iscdi=true