Ultra-thin h-BN substrates for nanoscale plasmon spectroscopy

Probing plasmonic properties of surface deposited nanoparticles with high spatial resolution requires the use of a low absorption support. In this work, ultra-thin hexagonal boron nitride (h-BN) flakes are employed as substrates for scanning transmission electron microscopy. The thicknesses of only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-01, Vol.125 (2)
Hauptverfasser: Schiffmann, Alexander, Knez, Daniel, Lackner, Florian, Lasserus, Maximilian, Messner, Roman, Schnedlitz, Martin, Kothleitner, Gerald, Hofer, Ferdinand, Ernst, Wolfgang E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Probing plasmonic properties of surface deposited nanoparticles with high spatial resolution requires the use of a low absorption support. In this work, ultra-thin hexagonal boron nitride (h-BN) flakes are employed as substrates for scanning transmission electron microscopy. The thicknesses of only a few atomic layers, the flat surface, and the large bandgap provide a unique set of properties, which makes h-BN ideally suitable for high resolution plasmon spectroscopy by means of electron energy loss spectroscopy (EELS), especially for small nanoparticles. A facile fabrication process allows the production of h-BN substrates with a thickness of only a few atomic layers. The advantages of h-BN, especially for the low-loss energy region of EEL spectra, are shown in a direct comparison with a silicon nitride substrate. Furthermore, results of the investigation of localized surface plasmon resonances (LSPRs) of Ag and Ag–Au core–shell nanoparticles in the sub-20 nm size regime are presented, confirming the advantages of the fabricated substrate for LSPR mapping. The plasmonic nanoparticles were assembled utilizing the helium nanodroplet synthesis approach, which allows for a very soft deposition and the preservation of the integrity of the ultra-thin substrate. Moreover, it provides a completely solvent and surfactant free environment for the assembly of tailored nanoparticles.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5064529