Modeling of turbulent particle and heat transport in helical plasmas based on gyrokinetic analysis

The particle and heat transport driven by the ion temperature gradient instability in helical plasmas is investigated by the gyrokinetic analysis taking into account the kinetic electron response. High and low ion temperature plasma cases for the discharge in the Large Helical Device (LHD) are studi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2019-01, Vol.26 (1)
Hauptverfasser: Toda, S., Nakata, M., Nunami, M., Ishizawa, A., Watanabe, T.-H., Sugama, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physics of plasmas
container_volume 26
creator Toda, S.
Nakata, M.
Nunami, M.
Ishizawa, A.
Watanabe, T.-H.
Sugama, H.
description The particle and heat transport driven by the ion temperature gradient instability in helical plasmas is investigated by the gyrokinetic analysis taking into account the kinetic electron response. High and low ion temperature plasma cases for the discharge in the Large Helical Device (LHD) are studied. Two types of transport models with a lower computational cost to reproduce the nonlinear gyrokinetic simulation results within allowable errors are presented for application in quick transport analyses. The turbulent electron and ion heat diffusivity models are given in terms of the linear growth rate and the characteristic quantity for the linear response of zonal flows, while the model of the effective particle diffusivity is not obtained for the flattened density profile observed in the LHD. The quasilinear flux model is also shown for the heat transport. The quasilinear flux models for the energy fluxes are found to reproduce the nonlinear simulation results at the accuracy similar to that of the heat diffusivity models. In addition, the quasilinear particle flux model, which is applicable to the transport analysis for LHD plasmas, is constructed. These turbulent reduced models enable coupling to the other simulation in the integrated codes for the LHD.
doi_str_mv 10.1063/1.5058720
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5058720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2171794646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-917b1a8691c907dff59bacefb538b362114708cec82ab8090b43fc0d6189a7d13</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_BFFKzVg98g4Elha7KPPI5SfEHFi4K3ZZJNamq6WZOs0G_vlhY9CJ5mGH4zDP8sOyd4RjAtr8msxjVnBT7IJgRzkTPKqsNtz3BOafV2nJ3EuMIYV7Tmk0w--VY72y2RNygNQQ5Odwn1EJJVTiPoWvSuIaEUoIu9DwnZbpw4q8Ch3kFcQ0QSom6R79ByE_yH7fS4PK6C20QbT7MjAy7qs32dZq93ty_zh3zxfP84v1nkqmJFygVhkgCngiiBWWtMLSQobWRdclnSgpCKYa604gVIjgWWVWkUbinhAlhLyml2sbvbB_856JialR_C-ERsCsIIExWt6Kgud0oFH2PQpumDXUPYNAQ32wgb0uwjHO3VzkZlEyTrux_85cMvbPrW_If_Xv4GxxKAVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2171794646</pqid></control><display><type>article</type><title>Modeling of turbulent particle and heat transport in helical plasmas based on gyrokinetic analysis</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Toda, S. ; Nakata, M. ; Nunami, M. ; Ishizawa, A. ; Watanabe, T.-H. ; Sugama, H.</creator><creatorcontrib>Toda, S. ; Nakata, M. ; Nunami, M. ; Ishizawa, A. ; Watanabe, T.-H. ; Sugama, H.</creatorcontrib><description>The particle and heat transport driven by the ion temperature gradient instability in helical plasmas is investigated by the gyrokinetic analysis taking into account the kinetic electron response. High and low ion temperature plasma cases for the discharge in the Large Helical Device (LHD) are studied. Two types of transport models with a lower computational cost to reproduce the nonlinear gyrokinetic simulation results within allowable errors are presented for application in quick transport analyses. The turbulent electron and ion heat diffusivity models are given in terms of the linear growth rate and the characteristic quantity for the linear response of zonal flows, while the model of the effective particle diffusivity is not obtained for the flattened density profile observed in the LHD. The quasilinear flux model is also shown for the heat transport. The quasilinear flux models for the energy fluxes are found to reproduce the nonlinear simulation results at the accuracy similar to that of the heat diffusivity models. In addition, the quasilinear particle flux model, which is applicable to the transport analysis for LHD plasmas, is constructed. These turbulent reduced models enable coupling to the other simulation in the integrated codes for the LHD.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5058720</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Computer simulation ; Diffusivity ; Fluxes ; Heat ; Ion temperature ; Plasma physics ; Plasmas (physics) ; Simulation ; Stability ; Stability analysis ; Temperature gradients ; Transport</subject><ispartof>Physics of plasmas, 2019-01, Vol.26 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-917b1a8691c907dff59bacefb538b362114708cec82ab8090b43fc0d6189a7d13</citedby><cites>FETCH-LOGICAL-c472t-917b1a8691c907dff59bacefb538b362114708cec82ab8090b43fc0d6189a7d13</cites><orcidid>0000-0001-5444-1758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5058720$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Toda, S.</creatorcontrib><creatorcontrib>Nakata, M.</creatorcontrib><creatorcontrib>Nunami, M.</creatorcontrib><creatorcontrib>Ishizawa, A.</creatorcontrib><creatorcontrib>Watanabe, T.-H.</creatorcontrib><creatorcontrib>Sugama, H.</creatorcontrib><title>Modeling of turbulent particle and heat transport in helical plasmas based on gyrokinetic analysis</title><title>Physics of plasmas</title><description>The particle and heat transport driven by the ion temperature gradient instability in helical plasmas is investigated by the gyrokinetic analysis taking into account the kinetic electron response. High and low ion temperature plasma cases for the discharge in the Large Helical Device (LHD) are studied. Two types of transport models with a lower computational cost to reproduce the nonlinear gyrokinetic simulation results within allowable errors are presented for application in quick transport analyses. The turbulent electron and ion heat diffusivity models are given in terms of the linear growth rate and the characteristic quantity for the linear response of zonal flows, while the model of the effective particle diffusivity is not obtained for the flattened density profile observed in the LHD. The quasilinear flux model is also shown for the heat transport. The quasilinear flux models for the energy fluxes are found to reproduce the nonlinear simulation results at the accuracy similar to that of the heat diffusivity models. In addition, the quasilinear particle flux model, which is applicable to the transport analysis for LHD plasmas, is constructed. These turbulent reduced models enable coupling to the other simulation in the integrated codes for the LHD.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Diffusivity</subject><subject>Fluxes</subject><subject>Heat</subject><subject>Ion temperature</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><subject>Simulation</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Temperature gradients</subject><subject>Transport</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQB_BFFKzVg98g4Elha7KPPI5SfEHFi4K3ZZJNamq6WZOs0G_vlhY9CJ5mGH4zDP8sOyd4RjAtr8msxjVnBT7IJgRzkTPKqsNtz3BOafV2nJ3EuMIYV7Tmk0w--VY72y2RNygNQQ5Odwn1EJJVTiPoWvSuIaEUoIu9DwnZbpw4q8Ch3kFcQ0QSom6R79ByE_yH7fS4PK6C20QbT7MjAy7qs32dZq93ty_zh3zxfP84v1nkqmJFygVhkgCngiiBWWtMLSQobWRdclnSgpCKYa604gVIjgWWVWkUbinhAlhLyml2sbvbB_856JialR_C-ERsCsIIExWt6Kgud0oFH2PQpumDXUPYNAQ32wgb0uwjHO3VzkZlEyTrux_85cMvbPrW_If_Xv4GxxKAVQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Toda, S.</creator><creator>Nakata, M.</creator><creator>Nunami, M.</creator><creator>Ishizawa, A.</creator><creator>Watanabe, T.-H.</creator><creator>Sugama, H.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5444-1758</orcidid></search><sort><creationdate>20190101</creationdate><title>Modeling of turbulent particle and heat transport in helical plasmas based on gyrokinetic analysis</title><author>Toda, S. ; Nakata, M. ; Nunami, M. ; Ishizawa, A. ; Watanabe, T.-H. ; Sugama, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-917b1a8691c907dff59bacefb538b362114708cec82ab8090b43fc0d6189a7d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Diffusivity</topic><topic>Fluxes</topic><topic>Heat</topic><topic>Ion temperature</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><topic>Simulation</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Temperature gradients</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toda, S.</creatorcontrib><creatorcontrib>Nakata, M.</creatorcontrib><creatorcontrib>Nunami, M.</creatorcontrib><creatorcontrib>Ishizawa, A.</creatorcontrib><creatorcontrib>Watanabe, T.-H.</creatorcontrib><creatorcontrib>Sugama, H.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toda, S.</au><au>Nakata, M.</au><au>Nunami, M.</au><au>Ishizawa, A.</au><au>Watanabe, T.-H.</au><au>Sugama, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of turbulent particle and heat transport in helical plasmas based on gyrokinetic analysis</atitle><jtitle>Physics of plasmas</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>26</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The particle and heat transport driven by the ion temperature gradient instability in helical plasmas is investigated by the gyrokinetic analysis taking into account the kinetic electron response. High and low ion temperature plasma cases for the discharge in the Large Helical Device (LHD) are studied. Two types of transport models with a lower computational cost to reproduce the nonlinear gyrokinetic simulation results within allowable errors are presented for application in quick transport analyses. The turbulent electron and ion heat diffusivity models are given in terms of the linear growth rate and the characteristic quantity for the linear response of zonal flows, while the model of the effective particle diffusivity is not obtained for the flattened density profile observed in the LHD. The quasilinear flux model is also shown for the heat transport. The quasilinear flux models for the energy fluxes are found to reproduce the nonlinear simulation results at the accuracy similar to that of the heat diffusivity models. In addition, the quasilinear particle flux model, which is applicable to the transport analysis for LHD plasmas, is constructed. These turbulent reduced models enable coupling to the other simulation in the integrated codes for the LHD.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5058720</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5444-1758</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2019-01, Vol.26 (1)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_1_5058720
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computational fluid dynamics
Computer simulation
Diffusivity
Fluxes
Heat
Ion temperature
Plasma physics
Plasmas (physics)
Simulation
Stability
Stability analysis
Temperature gradients
Transport
title Modeling of turbulent particle and heat transport in helical plasmas based on gyrokinetic analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20turbulent%20particle%20and%20heat%20transport%20in%20helical%20plasmas%20based%20on%20gyrokinetic%20analysis&rft.jtitle=Physics%20of%20plasmas&rft.au=Toda,%20S.&rft.date=2019-01-01&rft.volume=26&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5058720&rft_dat=%3Cproquest_cross%3E2171794646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2171794646&rft_id=info:pmid/&rfr_iscdi=true