Femtosecond laser-based phase-shifting interferometry for optical surface measurement

This paper demonstrates an unequal-path phase-shifting interferometer for precise optical surface measurement using a femtosecond laser. According to the periodic low temporal coherence of the femtosecond laser, the relative time delay between pulses from the reference and target surfaces is scanned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-11, Vol.89 (11), p.113105-113105
Hauptverfasser: Wang, Yue, Xiong, Shilin, Wu, Guanhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113105
container_issue 11
container_start_page 113105
container_title Review of scientific instruments
container_volume 89
creator Wang, Yue
Xiong, Shilin
Wu, Guanhao
description This paper demonstrates an unequal-path phase-shifting interferometer for precise optical surface measurement using a femtosecond laser. According to the periodic low temporal coherence of the femtosecond laser, the relative time delay between pulses from the reference and target surfaces is scanned by sweeping the repetition frequency for phase shifting when the optical path length difference is set to integer times of the pulse interval, which removes mechanical scanning devices in the interferometer. In particular, we employ an iterative least-squares fitting algorithm to derive the phase. With this method, a glass slide surface is reconstructed that agrees well with the surface measured using a commercial Fizeau interferometer. The comparison results show that the difference in the peak-to-valley value is 0.050 μm.
doi_str_mv 10.1063/1.5057400
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5057400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149029172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-789aa2083c80fa76a954360e4ead813a6ce33380308250bbe5e0186e4a93ec6e3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiq6rB_-AFLyo0HXSadP0KItfsOBFzyWbTt1K29QkFfbfG9lVQdAcMjk8vBlexk44zDgIvOKzDLI8BdhhEw6yiHOR4C6bAGAaizyVB-zQuVcIJ-N8nx0gZMAR-IQ931LnjSNt-ipqlSMbL8NdRcMqjNitmto3_UvU9J5sTdZ05O06qo2NzOAbrdrIjbZWmqKOVHhSR70_Ynu1ah0db-c0_HPzNL-PF493D_PrRaxRoo9zWSiVgEQtoVa5UEWWogBKSVWSoxKaEFECgkwyWC4pI-BSUKoKJC0Ip-x8kztY8zaS82XXOE1tq3oyoysTnhaQFDxPAj37RV_NaPuwXVDIs0SkyIO62ChtjXOW6nKwTafsuuRQfnZd8nLbdbCn28Rx2VH1Lb_KDeByA5xuvPKN6f9N-xO_G_sDy6Gq8QOTJpRl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131526431</pqid></control><display><type>article</type><title>Femtosecond laser-based phase-shifting interferometry for optical surface measurement</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Yue ; Xiong, Shilin ; Wu, Guanhao</creator><creatorcontrib>Wang, Yue ; Xiong, Shilin ; Wu, Guanhao</creatorcontrib><description>This paper demonstrates an unequal-path phase-shifting interferometer for precise optical surface measurement using a femtosecond laser. According to the periodic low temporal coherence of the femtosecond laser, the relative time delay between pulses from the reference and target surfaces is scanned by sweeping the repetition frequency for phase shifting when the optical path length difference is set to integer times of the pulse interval, which removes mechanical scanning devices in the interferometer. In particular, we employ an iterative least-squares fitting algorithm to derive the phase. With this method, a glass slide surface is reconstructed that agrees well with the surface measured using a commercial Fizeau interferometer. The comparison results show that the difference in the peak-to-valley value is 0.050 μm.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5057400</identifier><identifier>PMID: 30501301</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Femtosecond pulsed lasers ; Laser applications ; Lasers ; Scientific apparatus &amp; instruments ; Time lag</subject><ispartof>Review of scientific instruments, 2018-11, Vol.89 (11), p.113105-113105</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-789aa2083c80fa76a954360e4ead813a6ce33380308250bbe5e0186e4a93ec6e3</citedby><cites>FETCH-LOGICAL-c383t-789aa2083c80fa76a954360e4ead813a6ce33380308250bbe5e0186e4a93ec6e3</cites><orcidid>0000-0002-0814-2578 ; 0000-0002-3642-0301 ; 0000000208142578 ; 0000000236420301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5057400$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30501301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Xiong, Shilin</creatorcontrib><creatorcontrib>Wu, Guanhao</creatorcontrib><title>Femtosecond laser-based phase-shifting interferometry for optical surface measurement</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>This paper demonstrates an unequal-path phase-shifting interferometer for precise optical surface measurement using a femtosecond laser. According to the periodic low temporal coherence of the femtosecond laser, the relative time delay between pulses from the reference and target surfaces is scanned by sweeping the repetition frequency for phase shifting when the optical path length difference is set to integer times of the pulse interval, which removes mechanical scanning devices in the interferometer. In particular, we employ an iterative least-squares fitting algorithm to derive the phase. With this method, a glass slide surface is reconstructed that agrees well with the surface measured using a commercial Fizeau interferometer. The comparison results show that the difference in the peak-to-valley value is 0.050 μm.</description><subject>Femtosecond pulsed lasers</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Time lag</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiq6rB_-AFLyo0HXSadP0KItfsOBFzyWbTt1K29QkFfbfG9lVQdAcMjk8vBlexk44zDgIvOKzDLI8BdhhEw6yiHOR4C6bAGAaizyVB-zQuVcIJ-N8nx0gZMAR-IQ931LnjSNt-ipqlSMbL8NdRcMqjNitmto3_UvU9J5sTdZ05O06qo2NzOAbrdrIjbZWmqKOVHhSR70_Ynu1ah0db-c0_HPzNL-PF493D_PrRaxRoo9zWSiVgEQtoVa5UEWWogBKSVWSoxKaEFECgkwyWC4pI-BSUKoKJC0Ip-x8kztY8zaS82XXOE1tq3oyoysTnhaQFDxPAj37RV_NaPuwXVDIs0SkyIO62ChtjXOW6nKwTafsuuRQfnZd8nLbdbCn28Rx2VH1Lb_KDeByA5xuvPKN6f9N-xO_G_sDy6Gq8QOTJpRl</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Wang, Yue</creator><creator>Xiong, Shilin</creator><creator>Wu, Guanhao</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0814-2578</orcidid><orcidid>https://orcid.org/0000-0002-3642-0301</orcidid><orcidid>https://orcid.org/0000000208142578</orcidid><orcidid>https://orcid.org/0000000236420301</orcidid></search><sort><creationdate>201811</creationdate><title>Femtosecond laser-based phase-shifting interferometry for optical surface measurement</title><author>Wang, Yue ; Xiong, Shilin ; Wu, Guanhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-789aa2083c80fa76a954360e4ead813a6ce33380308250bbe5e0186e4a93ec6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Femtosecond pulsed lasers</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Xiong, Shilin</creatorcontrib><creatorcontrib>Wu, Guanhao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yue</au><au>Xiong, Shilin</au><au>Wu, Guanhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtosecond laser-based phase-shifting interferometry for optical surface measurement</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-11</date><risdate>2018</risdate><volume>89</volume><issue>11</issue><spage>113105</spage><epage>113105</epage><pages>113105-113105</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>This paper demonstrates an unequal-path phase-shifting interferometer for precise optical surface measurement using a femtosecond laser. According to the periodic low temporal coherence of the femtosecond laser, the relative time delay between pulses from the reference and target surfaces is scanned by sweeping the repetition frequency for phase shifting when the optical path length difference is set to integer times of the pulse interval, which removes mechanical scanning devices in the interferometer. In particular, we employ an iterative least-squares fitting algorithm to derive the phase. With this method, a glass slide surface is reconstructed that agrees well with the surface measured using a commercial Fizeau interferometer. The comparison results show that the difference in the peak-to-valley value is 0.050 μm.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30501301</pmid><doi>10.1063/1.5057400</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0814-2578</orcidid><orcidid>https://orcid.org/0000-0002-3642-0301</orcidid><orcidid>https://orcid.org/0000000208142578</orcidid><orcidid>https://orcid.org/0000000236420301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2018-11, Vol.89 (11), p.113105-113105
issn 0034-6748
1089-7623
language eng
recordid cdi_crossref_primary_10_1063_1_5057400
source AIP Journals Complete; Alma/SFX Local Collection
subjects Femtosecond pulsed lasers
Laser applications
Lasers
Scientific apparatus & instruments
Time lag
title Femtosecond laser-based phase-shifting interferometry for optical surface measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtosecond%20laser-based%20phase-shifting%20interferometry%20for%20optical%20surface%20measurement&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Wang,%20Yue&rft.date=2018-11&rft.volume=89&rft.issue=11&rft.spage=113105&rft.epage=113105&rft.pages=113105-113105&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5057400&rft_dat=%3Cproquest_cross%3E2149029172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131526431&rft_id=info:pmid/30501301&rfr_iscdi=true