Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation

The localization of deep traps in normally-off AlGaN/GaN metal-oxide-semiconductor channel high-electron mobility transistors has been established by means of capacitance and current deep level transient spectroscopies (DLTS). Electrical simulations of the total current density between the drain and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-01, Vol.125 (3)
Hauptverfasser: Ferrandis, Philippe, El-Khatib, Mariam, Jaud, Marie-Anne, Morvan, Erwan, Charles, Matthew, Guillot, Gérard, Bremond, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of applied physics
container_volume 125
creator Ferrandis, Philippe
El-Khatib, Mariam
Jaud, Marie-Anne
Morvan, Erwan
Charles, Matthew
Guillot, Gérard
Bremond, Georges
description The localization of deep traps in normally-off AlGaN/GaN metal-oxide-semiconductor channel high-electron mobility transistors has been established by means of capacitance and current deep level transient spectroscopies (DLTS). Electrical simulations of the total current density between the drain and source contacts, the electron density, and the equipotential line distribution helped to understand the transport mechanisms into the device and to determine the zone probed by DLTS measurements. By changing the drain-source voltage in current DLTS or the reverse bias in capacitance DLTS, we demonstrated that we can choose to probe either the region below the gate or the region between the gate and drain electrodes. We could then see that defects related to reactive ion etching induced surface damage, expected to be formed during the gate recess process, were located only under the gate contact whereas native defects were found everywhere in the GaN layer. Thanks to this method of localization, we assigned a trap with an EC – 0.5 eV to ion etching induced damage.
doi_str_mv 10.1063/1.5055926
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5055926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167494537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-761adc9c2d0923c8b2e2c272e0a4bfa32b7e7b26e8dd8c29aed4a9d7c706727f3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf8g4EmhW5L-SHMcQzdh6EE9hzRJXUbXdEk2qH-93Tq2g-AhhITP-_LeA-AeoxFGWTzGoxSlKSPZBRhglLOIpim6BAOECI5yRtk1uPF-hRDGecwGYPMRtqqFtoRK6wYGJxoPTQ0n1Uy8jbsDl-Z7GelKy-BsDde2MJUJ7V7W3vhgnYdFC3tgpKigXAonZNDO_IhguhpRK-jNelsdnrfgqhSV13fHewi-Xp4_p_No8T57nU4WkYxZFiKaYaEkk0QhRmKZF0QTSSjRSCRFKWJSUE0LkulcqVwSJrRKBFNUUpRRQst4CB773KWoeOPMWriWW2H4fLLg-z-EGcsxine4sw-9bZzdbLUPfGW3ru7a4wRnNGFJGtNzonTWe6fLUyxGfL99jvlx-5196q2XJhzmPuGddWfIG1X-h_8m_wL08ZP7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167494537</pqid></control><display><type>article</type><title>Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Ferrandis, Philippe ; El-Khatib, Mariam ; Jaud, Marie-Anne ; Morvan, Erwan ; Charles, Matthew ; Guillot, Gérard ; Bremond, Georges</creator><creatorcontrib>Ferrandis, Philippe ; El-Khatib, Mariam ; Jaud, Marie-Anne ; Morvan, Erwan ; Charles, Matthew ; Guillot, Gérard ; Bremond, Georges</creatorcontrib><description>The localization of deep traps in normally-off AlGaN/GaN metal-oxide-semiconductor channel high-electron mobility transistors has been established by means of capacitance and current deep level transient spectroscopies (DLTS). Electrical simulations of the total current density between the drain and source contacts, the electron density, and the equipotential line distribution helped to understand the transport mechanisms into the device and to determine the zone probed by DLTS measurements. By changing the drain-source voltage in current DLTS or the reverse bias in capacitance DLTS, we demonstrated that we can choose to probe either the region below the gate or the region between the gate and drain electrodes. We could then see that defects related to reactive ion etching induced surface damage, expected to be formed during the gate recess process, were located only under the gate contact whereas native defects were found everywhere in the GaN layer. Thanks to this method of localization, we assigned a trap with an EC – 0.5 eV to ion etching induced damage.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5055926</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum gallium nitrides ; Capacitance ; Condensed Matter ; Defects ; Electric contacts ; Electrical properties ; Electron density ; Engineering Sciences ; Gallium nitrides ; High electron mobility transistors ; Ion etching ; Localization ; Materials Science ; Metal oxides ; Micro and nanotechnologies ; Microelectronics ; Physics ; Reactive ion etching ; Semiconductor devices ; Transistors</subject><ispartof>Journal of applied physics, 2019-01, Vol.125 (3)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-761adc9c2d0923c8b2e2c272e0a4bfa32b7e7b26e8dd8c29aed4a9d7c706727f3</citedby><cites>FETCH-LOGICAL-c396t-761adc9c2d0923c8b2e2c272e0a4bfa32b7e7b26e8dd8c29aed4a9d7c706727f3</cites><orcidid>0000-0001-6880-3174 ; 0000-0003-2901-2120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5055926$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01998103$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrandis, Philippe</creatorcontrib><creatorcontrib>El-Khatib, Mariam</creatorcontrib><creatorcontrib>Jaud, Marie-Anne</creatorcontrib><creatorcontrib>Morvan, Erwan</creatorcontrib><creatorcontrib>Charles, Matthew</creatorcontrib><creatorcontrib>Guillot, Gérard</creatorcontrib><creatorcontrib>Bremond, Georges</creatorcontrib><title>Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation</title><title>Journal of applied physics</title><description>The localization of deep traps in normally-off AlGaN/GaN metal-oxide-semiconductor channel high-electron mobility transistors has been established by means of capacitance and current deep level transient spectroscopies (DLTS). Electrical simulations of the total current density between the drain and source contacts, the electron density, and the equipotential line distribution helped to understand the transport mechanisms into the device and to determine the zone probed by DLTS measurements. By changing the drain-source voltage in current DLTS or the reverse bias in capacitance DLTS, we demonstrated that we can choose to probe either the region below the gate or the region between the gate and drain electrodes. We could then see that defects related to reactive ion etching induced surface damage, expected to be formed during the gate recess process, were located only under the gate contact whereas native defects were found everywhere in the GaN layer. Thanks to this method of localization, we assigned a trap with an EC – 0.5 eV to ion etching induced damage.</description><subject>Aluminum gallium nitrides</subject><subject>Capacitance</subject><subject>Condensed Matter</subject><subject>Defects</subject><subject>Electric contacts</subject><subject>Electrical properties</subject><subject>Electron density</subject><subject>Engineering Sciences</subject><subject>Gallium nitrides</subject><subject>High electron mobility transistors</subject><subject>Ion etching</subject><subject>Localization</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Physics</subject><subject>Reactive ion etching</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf8g4EmhW5L-SHMcQzdh6EE9hzRJXUbXdEk2qH-93Tq2g-AhhITP-_LeA-AeoxFGWTzGoxSlKSPZBRhglLOIpim6BAOECI5yRtk1uPF-hRDGecwGYPMRtqqFtoRK6wYGJxoPTQ0n1Uy8jbsDl-Z7GelKy-BsDde2MJUJ7V7W3vhgnYdFC3tgpKigXAonZNDO_IhguhpRK-jNelsdnrfgqhSV13fHewi-Xp4_p_No8T57nU4WkYxZFiKaYaEkk0QhRmKZF0QTSSjRSCRFKWJSUE0LkulcqVwSJrRKBFNUUpRRQst4CB773KWoeOPMWriWW2H4fLLg-z-EGcsxine4sw-9bZzdbLUPfGW3ru7a4wRnNGFJGtNzonTWe6fLUyxGfL99jvlx-5196q2XJhzmPuGddWfIG1X-h_8m_wL08ZP7</recordid><startdate>20190121</startdate><enddate>20190121</enddate><creator>Ferrandis, Philippe</creator><creator>El-Khatib, Mariam</creator><creator>Jaud, Marie-Anne</creator><creator>Morvan, Erwan</creator><creator>Charles, Matthew</creator><creator>Guillot, Gérard</creator><creator>Bremond, Georges</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6880-3174</orcidid><orcidid>https://orcid.org/0000-0003-2901-2120</orcidid></search><sort><creationdate>20190121</creationdate><title>Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation</title><author>Ferrandis, Philippe ; El-Khatib, Mariam ; Jaud, Marie-Anne ; Morvan, Erwan ; Charles, Matthew ; Guillot, Gérard ; Bremond, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-761adc9c2d0923c8b2e2c272e0a4bfa32b7e7b26e8dd8c29aed4a9d7c706727f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum gallium nitrides</topic><topic>Capacitance</topic><topic>Condensed Matter</topic><topic>Defects</topic><topic>Electric contacts</topic><topic>Electrical properties</topic><topic>Electron density</topic><topic>Engineering Sciences</topic><topic>Gallium nitrides</topic><topic>High electron mobility transistors</topic><topic>Ion etching</topic><topic>Localization</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Physics</topic><topic>Reactive ion etching</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrandis, Philippe</creatorcontrib><creatorcontrib>El-Khatib, Mariam</creatorcontrib><creatorcontrib>Jaud, Marie-Anne</creatorcontrib><creatorcontrib>Morvan, Erwan</creatorcontrib><creatorcontrib>Charles, Matthew</creatorcontrib><creatorcontrib>Guillot, Gérard</creatorcontrib><creatorcontrib>Bremond, Georges</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrandis, Philippe</au><au>El-Khatib, Mariam</au><au>Jaud, Marie-Anne</au><au>Morvan, Erwan</au><au>Charles, Matthew</au><au>Guillot, Gérard</au><au>Bremond, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation</atitle><jtitle>Journal of applied physics</jtitle><date>2019-01-21</date><risdate>2019</risdate><volume>125</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The localization of deep traps in normally-off AlGaN/GaN metal-oxide-semiconductor channel high-electron mobility transistors has been established by means of capacitance and current deep level transient spectroscopies (DLTS). Electrical simulations of the total current density between the drain and source contacts, the electron density, and the equipotential line distribution helped to understand the transport mechanisms into the device and to determine the zone probed by DLTS measurements. By changing the drain-source voltage in current DLTS or the reverse bias in capacitance DLTS, we demonstrated that we can choose to probe either the region below the gate or the region between the gate and drain electrodes. We could then see that defects related to reactive ion etching induced surface damage, expected to be formed during the gate recess process, were located only under the gate contact whereas native defects were found everywhere in the GaN layer. Thanks to this method of localization, we assigned a trap with an EC – 0.5 eV to ion etching induced damage.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5055926</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6880-3174</orcidid><orcidid>https://orcid.org/0000-0003-2901-2120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2019-01, Vol.125 (3)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_5055926
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Aluminum gallium nitrides
Capacitance
Condensed Matter
Defects
Electric contacts
Electrical properties
Electron density
Engineering Sciences
Gallium nitrides
High electron mobility transistors
Ion etching
Localization
Materials Science
Metal oxides
Micro and nanotechnologies
Microelectronics
Physics
Reactive ion etching
Semiconductor devices
Transistors
title Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20deep%20traps%20in%20AlGaN/GaN%20high-electron%20mobility%20transistors%20by%20electrical%20characterization%20and%20simulation&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ferrandis,%20Philippe&rft.date=2019-01-21&rft.volume=125&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5055926&rft_dat=%3Cproquest_cross%3E2167494537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167494537&rft_id=info:pmid/&rfr_iscdi=true