Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation
The localization of deep traps in normally-off AlGaN/GaN metal-oxide-semiconductor channel high-electron mobility transistors has been established by means of capacitance and current deep level transient spectroscopies (DLTS). Electrical simulations of the total current density between the drain and...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2019-01, Vol.125 (3) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 125 |
creator | Ferrandis, Philippe El-Khatib, Mariam Jaud, Marie-Anne Morvan, Erwan Charles, Matthew Guillot, Gérard Bremond, Georges |
description | The localization of deep traps in normally-off AlGaN/GaN metal-oxide-semiconductor channel high-electron mobility transistors has been established by means of capacitance and current deep level transient spectroscopies (DLTS). Electrical simulations of the total current density between the drain and source contacts, the electron density, and the equipotential line distribution helped to understand the transport mechanisms into the device and to determine the zone probed by DLTS measurements. By changing the drain-source voltage in current DLTS or the reverse bias in capacitance DLTS, we demonstrated that we can choose to probe either the region below the gate or the region between the gate and drain electrodes. We could then see that defects related to reactive ion etching induced surface damage, expected to be formed during the gate recess process, were located only under the gate contact whereas native defects were found everywhere in the GaN layer. Thanks to this method of localization, we assigned a trap with an EC – 0.5 eV to ion etching induced damage. |
doi_str_mv | 10.1063/1.5055926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5055926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167494537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-761adc9c2d0923c8b2e2c272e0a4bfa32b7e7b26e8dd8c29aed4a9d7c706727f3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf8g4EmhW5L-SHMcQzdh6EE9hzRJXUbXdEk2qH-93Tq2g-AhhITP-_LeA-AeoxFGWTzGoxSlKSPZBRhglLOIpim6BAOECI5yRtk1uPF-hRDGecwGYPMRtqqFtoRK6wYGJxoPTQ0n1Uy8jbsDl-Z7GelKy-BsDde2MJUJ7V7W3vhgnYdFC3tgpKigXAonZNDO_IhguhpRK-jNelsdnrfgqhSV13fHewi-Xp4_p_No8T57nU4WkYxZFiKaYaEkk0QhRmKZF0QTSSjRSCRFKWJSUE0LkulcqVwSJrRKBFNUUpRRQst4CB773KWoeOPMWriWW2H4fLLg-z-EGcsxine4sw-9bZzdbLUPfGW3ru7a4wRnNGFJGtNzonTWe6fLUyxGfL99jvlx-5196q2XJhzmPuGddWfIG1X-h_8m_wL08ZP7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167494537</pqid></control><display><type>article</type><title>Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Ferrandis, Philippe ; El-Khatib, Mariam ; Jaud, Marie-Anne ; Morvan, Erwan ; Charles, Matthew ; Guillot, Gérard ; Bremond, Georges</creator><creatorcontrib>Ferrandis, Philippe ; El-Khatib, Mariam ; Jaud, Marie-Anne ; Morvan, Erwan ; Charles, Matthew ; Guillot, Gérard ; Bremond, Georges</creatorcontrib><description>The localization of deep traps in normally-off AlGaN/GaN metal-oxide-semiconductor channel high-electron mobility transistors has been established by means of capacitance and current deep level transient spectroscopies (DLTS). Electrical simulations of the total current density between the drain and source contacts, the electron density, and the equipotential line distribution helped to understand the transport mechanisms into the device and to determine the zone probed by DLTS measurements. By changing the drain-source voltage in current DLTS or the reverse bias in capacitance DLTS, we demonstrated that we can choose to probe either the region below the gate or the region between the gate and drain electrodes. We could then see that defects related to reactive ion etching induced surface damage, expected to be formed during the gate recess process, were located only under the gate contact whereas native defects were found everywhere in the GaN layer. Thanks to this method of localization, we assigned a trap with an EC – 0.5 eV to ion etching induced damage.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5055926</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum gallium nitrides ; Capacitance ; Condensed Matter ; Defects ; Electric contacts ; Electrical properties ; Electron density ; Engineering Sciences ; Gallium nitrides ; High electron mobility transistors ; Ion etching ; Localization ; Materials Science ; Metal oxides ; Micro and nanotechnologies ; Microelectronics ; Physics ; Reactive ion etching ; Semiconductor devices ; Transistors</subject><ispartof>Journal of applied physics, 2019-01, Vol.125 (3)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-761adc9c2d0923c8b2e2c272e0a4bfa32b7e7b26e8dd8c29aed4a9d7c706727f3</citedby><cites>FETCH-LOGICAL-c396t-761adc9c2d0923c8b2e2c272e0a4bfa32b7e7b26e8dd8c29aed4a9d7c706727f3</cites><orcidid>0000-0001-6880-3174 ; 0000-0003-2901-2120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5055926$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01998103$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrandis, Philippe</creatorcontrib><creatorcontrib>El-Khatib, Mariam</creatorcontrib><creatorcontrib>Jaud, Marie-Anne</creatorcontrib><creatorcontrib>Morvan, Erwan</creatorcontrib><creatorcontrib>Charles, Matthew</creatorcontrib><creatorcontrib>Guillot, Gérard</creatorcontrib><creatorcontrib>Bremond, Georges</creatorcontrib><title>Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation</title><title>Journal of applied physics</title><description>The localization of deep traps in normally-off AlGaN/GaN metal-oxide-semiconductor channel high-electron mobility transistors has been established by means of capacitance and current deep level transient spectroscopies (DLTS). Electrical simulations of the total current density between the drain and source contacts, the electron density, and the equipotential line distribution helped to understand the transport mechanisms into the device and to determine the zone probed by DLTS measurements. By changing the drain-source voltage in current DLTS or the reverse bias in capacitance DLTS, we demonstrated that we can choose to probe either the region below the gate or the region between the gate and drain electrodes. We could then see that defects related to reactive ion etching induced surface damage, expected to be formed during the gate recess process, were located only under the gate contact whereas native defects were found everywhere in the GaN layer. Thanks to this method of localization, we assigned a trap with an EC – 0.5 eV to ion etching induced damage.</description><subject>Aluminum gallium nitrides</subject><subject>Capacitance</subject><subject>Condensed Matter</subject><subject>Defects</subject><subject>Electric contacts</subject><subject>Electrical properties</subject><subject>Electron density</subject><subject>Engineering Sciences</subject><subject>Gallium nitrides</subject><subject>High electron mobility transistors</subject><subject>Ion etching</subject><subject>Localization</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Physics</subject><subject>Reactive ion etching</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf8g4EmhW5L-SHMcQzdh6EE9hzRJXUbXdEk2qH-93Tq2g-AhhITP-_LeA-AeoxFGWTzGoxSlKSPZBRhglLOIpim6BAOECI5yRtk1uPF-hRDGecwGYPMRtqqFtoRK6wYGJxoPTQ0n1Uy8jbsDl-Z7GelKy-BsDde2MJUJ7V7W3vhgnYdFC3tgpKigXAonZNDO_IhguhpRK-jNelsdnrfgqhSV13fHewi-Xp4_p_No8T57nU4WkYxZFiKaYaEkk0QhRmKZF0QTSSjRSCRFKWJSUE0LkulcqVwSJrRKBFNUUpRRQst4CB773KWoeOPMWriWW2H4fLLg-z-EGcsxine4sw-9bZzdbLUPfGW3ru7a4wRnNGFJGtNzonTWe6fLUyxGfL99jvlx-5196q2XJhzmPuGddWfIG1X-h_8m_wL08ZP7</recordid><startdate>20190121</startdate><enddate>20190121</enddate><creator>Ferrandis, Philippe</creator><creator>El-Khatib, Mariam</creator><creator>Jaud, Marie-Anne</creator><creator>Morvan, Erwan</creator><creator>Charles, Matthew</creator><creator>Guillot, Gérard</creator><creator>Bremond, Georges</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6880-3174</orcidid><orcidid>https://orcid.org/0000-0003-2901-2120</orcidid></search><sort><creationdate>20190121</creationdate><title>Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation</title><author>Ferrandis, Philippe ; El-Khatib, Mariam ; Jaud, Marie-Anne ; Morvan, Erwan ; Charles, Matthew ; Guillot, Gérard ; Bremond, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-761adc9c2d0923c8b2e2c272e0a4bfa32b7e7b26e8dd8c29aed4a9d7c706727f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum gallium nitrides</topic><topic>Capacitance</topic><topic>Condensed Matter</topic><topic>Defects</topic><topic>Electric contacts</topic><topic>Electrical properties</topic><topic>Electron density</topic><topic>Engineering Sciences</topic><topic>Gallium nitrides</topic><topic>High electron mobility transistors</topic><topic>Ion etching</topic><topic>Localization</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Physics</topic><topic>Reactive ion etching</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrandis, Philippe</creatorcontrib><creatorcontrib>El-Khatib, Mariam</creatorcontrib><creatorcontrib>Jaud, Marie-Anne</creatorcontrib><creatorcontrib>Morvan, Erwan</creatorcontrib><creatorcontrib>Charles, Matthew</creatorcontrib><creatorcontrib>Guillot, Gérard</creatorcontrib><creatorcontrib>Bremond, Georges</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrandis, Philippe</au><au>El-Khatib, Mariam</au><au>Jaud, Marie-Anne</au><au>Morvan, Erwan</au><au>Charles, Matthew</au><au>Guillot, Gérard</au><au>Bremond, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation</atitle><jtitle>Journal of applied physics</jtitle><date>2019-01-21</date><risdate>2019</risdate><volume>125</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The localization of deep traps in normally-off AlGaN/GaN metal-oxide-semiconductor channel high-electron mobility transistors has been established by means of capacitance and current deep level transient spectroscopies (DLTS). Electrical simulations of the total current density between the drain and source contacts, the electron density, and the equipotential line distribution helped to understand the transport mechanisms into the device and to determine the zone probed by DLTS measurements. By changing the drain-source voltage in current DLTS or the reverse bias in capacitance DLTS, we demonstrated that we can choose to probe either the region below the gate or the region between the gate and drain electrodes. We could then see that defects related to reactive ion etching induced surface damage, expected to be formed during the gate recess process, were located only under the gate contact whereas native defects were found everywhere in the GaN layer. Thanks to this method of localization, we assigned a trap with an EC – 0.5 eV to ion etching induced damage.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5055926</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6880-3174</orcidid><orcidid>https://orcid.org/0000-0003-2901-2120</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2019-01, Vol.125 (3) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5055926 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Aluminum gallium nitrides Capacitance Condensed Matter Defects Electric contacts Electrical properties Electron density Engineering Sciences Gallium nitrides High electron mobility transistors Ion etching Localization Materials Science Metal oxides Micro and nanotechnologies Microelectronics Physics Reactive ion etching Semiconductor devices Transistors |
title | Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20deep%20traps%20in%20AlGaN/GaN%20high-electron%20mobility%20transistors%20by%20electrical%20characterization%20and%20simulation&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ferrandis,%20Philippe&rft.date=2019-01-21&rft.volume=125&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5055926&rft_dat=%3Cproquest_cross%3E2167494537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167494537&rft_id=info:pmid/&rfr_iscdi=true |