Hybrid metamaterials combining pentamode lattices and phononic plates

We propose a design strategy for hybrid metamaterials with alternating phononic plates and pentamode units that produce complete bandgaps for elastic waves. The wave control relies on the simultaneous activation of two scattering mechanisms in the constituent elements. The approach is illustrated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-11, Vol.113 (20)
Hauptverfasser: Krushynska, A. O., Galich, P., Bosia, F., Pugno, N. M., Rudykh, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Applied physics letters
container_volume 113
creator Krushynska, A. O.
Galich, P.
Bosia, F.
Pugno, N. M.
Rudykh, S.
description We propose a design strategy for hybrid metamaterials with alternating phononic plates and pentamode units that produce complete bandgaps for elastic waves. The wave control relies on the simultaneous activation of two scattering mechanisms in the constituent elements. The approach is illustrated by numerical results for a configuration comprising phononic plates with cross-like cavities. We report complete bandgaps of tunable width due to variations of geometric parameters. We show that the wave attenuation performance of the hybrid metamaterials can be further enhanced through implementation of lightweight multiphase material compositions. These give rise to efficient wave attenuation in challenging low-frequency regions. The proposed design strategy is not limited to the analyzed cases alone and can be applied to various designs of phononic plates with cavities, inclusions or slender elements.
doi_str_mv 10.1063/1.5052161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5052161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132497192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-cc6d945a4dd2055166a11bf7dac7bb515c5da7d66691023f0705dad48996f6a43</originalsourceid><addsrcrecordid>eNqdkEFLAzEQhYMoWKsH_8GCJ4WtmWSTdI9SWisUvOg5ZJOspnSTNUmF_nsjLXj3NMyb782Dh9At4BlgTh9hxjAjwOEMTQALUVOA-TmaYIxpzVsGl-gqpW1ZGaF0gpbrQxedqQab1aCyjU7tUqXD0Dnv_Ec1Wl8Owdhqp3J22qZKeVONn8EH73Q1Ftmma3TRF5-9Oc0pel8t3xbrevP6_LJ42tSacpJrrblpG6YaYwhmDDhXAF0vjNKi6xgwzYwShnPeAia0xwIXwTTztuU9Vw2dorvj3zGGr71NWW7DPvoSKQlQ0rQCWlKo-yOlY0gp2l6O0Q0qHiRg-duSBHlqqbAPRzZpl1V2wf8P_g7xD5Sj6ekP4qx1PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132497192</pqid></control><display><type>article</type><title>Hybrid metamaterials combining pentamode lattices and phononic plates</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Krushynska, A. O. ; Galich, P. ; Bosia, F. ; Pugno, N. M. ; Rudykh, S.</creator><creatorcontrib>Krushynska, A. O. ; Galich, P. ; Bosia, F. ; Pugno, N. M. ; Rudykh, S.</creatorcontrib><description>We propose a design strategy for hybrid metamaterials with alternating phononic plates and pentamode units that produce complete bandgaps for elastic waves. The wave control relies on the simultaneous activation of two scattering mechanisms in the constituent elements. The approach is illustrated by numerical results for a configuration comprising phononic plates with cross-like cavities. We report complete bandgaps of tunable width due to variations of geometric parameters. We show that the wave attenuation performance of the hybrid metamaterials can be further enhanced through implementation of lightweight multiphase material compositions. These give rise to efficient wave attenuation in challenging low-frequency regions. The proposed design strategy is not limited to the analyzed cases alone and can be applied to various designs of phononic plates with cavities, inclusions or slender elements.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5052161</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Elastic waves ; Energy gap ; Holes ; Lattices (mathematics) ; Metamaterials ; Plates ; Wave attenuation</subject><ispartof>Applied physics letters, 2018-11, Vol.113 (20)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-cc6d945a4dd2055166a11bf7dac7bb515c5da7d66691023f0705dad48996f6a43</citedby><cites>FETCH-LOGICAL-c362t-cc6d945a4dd2055166a11bf7dac7bb515c5da7d66691023f0705dad48996f6a43</cites><orcidid>0000-0003-3259-2592 ; 0000-0002-2886-4519 ; 0000-0002-3148-5165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5052161$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Krushynska, A. O.</creatorcontrib><creatorcontrib>Galich, P.</creatorcontrib><creatorcontrib>Bosia, F.</creatorcontrib><creatorcontrib>Pugno, N. M.</creatorcontrib><creatorcontrib>Rudykh, S.</creatorcontrib><title>Hybrid metamaterials combining pentamode lattices and phononic plates</title><title>Applied physics letters</title><description>We propose a design strategy for hybrid metamaterials with alternating phononic plates and pentamode units that produce complete bandgaps for elastic waves. The wave control relies on the simultaneous activation of two scattering mechanisms in the constituent elements. The approach is illustrated by numerical results for a configuration comprising phononic plates with cross-like cavities. We report complete bandgaps of tunable width due to variations of geometric parameters. We show that the wave attenuation performance of the hybrid metamaterials can be further enhanced through implementation of lightweight multiphase material compositions. These give rise to efficient wave attenuation in challenging low-frequency regions. The proposed design strategy is not limited to the analyzed cases alone and can be applied to various designs of phononic plates with cavities, inclusions or slender elements.</description><subject>Applied physics</subject><subject>Elastic waves</subject><subject>Energy gap</subject><subject>Holes</subject><subject>Lattices (mathematics)</subject><subject>Metamaterials</subject><subject>Plates</subject><subject>Wave attenuation</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkEFLAzEQhYMoWKsH_8GCJ4WtmWSTdI9SWisUvOg5ZJOspnSTNUmF_nsjLXj3NMyb782Dh9At4BlgTh9hxjAjwOEMTQALUVOA-TmaYIxpzVsGl-gqpW1ZGaF0gpbrQxedqQab1aCyjU7tUqXD0Dnv_Ec1Wl8Owdhqp3J22qZKeVONn8EH73Q1Ftmma3TRF5-9Oc0pel8t3xbrevP6_LJ42tSacpJrrblpG6YaYwhmDDhXAF0vjNKi6xgwzYwShnPeAia0xwIXwTTztuU9Vw2dorvj3zGGr71NWW7DPvoSKQlQ0rQCWlKo-yOlY0gp2l6O0Q0qHiRg-duSBHlqqbAPRzZpl1V2wf8P_g7xD5Sj6ekP4qx1PQ</recordid><startdate>20181112</startdate><enddate>20181112</enddate><creator>Krushynska, A. O.</creator><creator>Galich, P.</creator><creator>Bosia, F.</creator><creator>Pugno, N. M.</creator><creator>Rudykh, S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3259-2592</orcidid><orcidid>https://orcid.org/0000-0002-2886-4519</orcidid><orcidid>https://orcid.org/0000-0002-3148-5165</orcidid></search><sort><creationdate>20181112</creationdate><title>Hybrid metamaterials combining pentamode lattices and phononic plates</title><author>Krushynska, A. O. ; Galich, P. ; Bosia, F. ; Pugno, N. M. ; Rudykh, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-cc6d945a4dd2055166a11bf7dac7bb515c5da7d66691023f0705dad48996f6a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Elastic waves</topic><topic>Energy gap</topic><topic>Holes</topic><topic>Lattices (mathematics)</topic><topic>Metamaterials</topic><topic>Plates</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krushynska, A. O.</creatorcontrib><creatorcontrib>Galich, P.</creatorcontrib><creatorcontrib>Bosia, F.</creatorcontrib><creatorcontrib>Pugno, N. M.</creatorcontrib><creatorcontrib>Rudykh, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krushynska, A. O.</au><au>Galich, P.</au><au>Bosia, F.</au><au>Pugno, N. M.</au><au>Rudykh, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid metamaterials combining pentamode lattices and phononic plates</atitle><jtitle>Applied physics letters</jtitle><date>2018-11-12</date><risdate>2018</risdate><volume>113</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We propose a design strategy for hybrid metamaterials with alternating phononic plates and pentamode units that produce complete bandgaps for elastic waves. The wave control relies on the simultaneous activation of two scattering mechanisms in the constituent elements. The approach is illustrated by numerical results for a configuration comprising phononic plates with cross-like cavities. We report complete bandgaps of tunable width due to variations of geometric parameters. We show that the wave attenuation performance of the hybrid metamaterials can be further enhanced through implementation of lightweight multiphase material compositions. These give rise to efficient wave attenuation in challenging low-frequency regions. The proposed design strategy is not limited to the analyzed cases alone and can be applied to various designs of phononic plates with cavities, inclusions or slender elements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5052161</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3259-2592</orcidid><orcidid>https://orcid.org/0000-0002-2886-4519</orcidid><orcidid>https://orcid.org/0000-0002-3148-5165</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-11, Vol.113 (20)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_5052161
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Elastic waves
Energy gap
Holes
Lattices (mathematics)
Metamaterials
Plates
Wave attenuation
title Hybrid metamaterials combining pentamode lattices and phononic plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20metamaterials%20combining%20pentamode%20lattices%20and%20phononic%20plates&rft.jtitle=Applied%20physics%20letters&rft.au=Krushynska,%20A.%20O.&rft.date=2018-11-12&rft.volume=113&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5052161&rft_dat=%3Cproquest_cross%3E2132497192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132497192&rft_id=info:pmid/&rfr_iscdi=true