Energy transfer and electron energization in collisionless magnetic reconnection for different guide-field intensities

Electron dynamics and energization are one of the key components of magnetic field dissipation in collisionless reconnection. In 2D numerical simulations of magnetic reconnection, the main mechanism that limits the current density and provides an effective dissipation is most probably the electron p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2018-12, Vol.25 (12)
Hauptverfasser: Pucci, F., Usami, S., Ji, H., Guo, X., Horiuchi, R., Okamura, S., Fox, W., Jara-Almonte, J., Yamada, M., Yoo, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physics of plasmas
container_volume 25
creator Pucci, F.
Usami, S.
Ji, H.
Guo, X.
Horiuchi, R.
Okamura, S.
Fox, W.
Jara-Almonte, J.
Yamada, M.
Yoo, J.
description Electron dynamics and energization are one of the key components of magnetic field dissipation in collisionless reconnection. In 2D numerical simulations of magnetic reconnection, the main mechanism that limits the current density and provides an effective dissipation is most probably the electron pressure tensor term, which has been shown to break the frozen-in condition at the x-point. In addition, the electron-meandering-orbit scale controls the width of the electron dissipation region, where the electron temperature has been observed to increase both in recent Magnetospheric Multiple-Scale (MMS) observations and in laboratory experiments, such as the Magnetic Reconnection Experiment (MRX). By means of two-dimensional full-particle simulations in an open system, we investigate how the energy conversion and particle energization depend on the guide field intensity. We study the energy transfer from the magnetic field to the plasma in the vicinity of the x-point and close downstream regions, and E·J and the threshold guide field separating two regimes where either the parallel component, E||J||, or the perpendicular component, E⊥·J⊥, dominate the energy transfer, confirming recent MRX results and also consistent with MMS observations. We calculate the energy partition between fields and kinetic and thermal energies of different species, from electron to ion scales, showing that there is no significant variation for different guide field configurations. Finally, we study possible mechanisms for electron perpendicular heating by examining electron distribution functions and self-consistently evolved particle orbits in high guide field configurations.
doi_str_mv 10.1063/1.5050992
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5050992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159506159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-ca04e133bcb0942ce240ee8b382c41dc2c6eb845be20bf5210668375388414f73</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWZPOx2aOU-gEFLwrewm52UlK22ZqkhfrrzVrBu5eZeZln3oEXoWtKZpRIdk9ngghS1-UJmlCi6qKSFT8d54oUUvKPc3QR45oQwqVQE7RfeAirA06h8dFCwI3vMPRgUhg8hnHpvprksnAem6HvXcyihxjxpll5SM7gAGbwPt-MmB0C7pzNXuATXu1cB4V10HfZIIGPLjmIl-jMNn2Eq98-Re-Pi7f5c7F8fXqZPywLw2qWCtMQDpSx1rSk5qWBkhMA1TJVGk47UxoJreKihZK0VpQ5AqlYJZhSnHJbsSm6Ofpuw_C5g5j0etgFn1_qkopaEJlrpm6PlAlDjAGs3ga3acJBU6LHWDXVv7Fm9u7IRuPSTzD_g_dD-AP1trPsG6S5iF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159506159</pqid></control><display><type>article</type><title>Energy transfer and electron energization in collisionless magnetic reconnection for different guide-field intensities</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Pucci, F. ; Usami, S. ; Ji, H. ; Guo, X. ; Horiuchi, R. ; Okamura, S. ; Fox, W. ; Jara-Almonte, J. ; Yamada, M. ; Yoo, J.</creator><creatorcontrib>Pucci, F. ; Usami, S. ; Ji, H. ; Guo, X. ; Horiuchi, R. ; Okamura, S. ; Fox, W. ; Jara-Almonte, J. ; Yamada, M. ; Yoo, J.</creatorcontrib><description>Electron dynamics and energization are one of the key components of magnetic field dissipation in collisionless reconnection. In 2D numerical simulations of magnetic reconnection, the main mechanism that limits the current density and provides an effective dissipation is most probably the electron pressure tensor term, which has been shown to break the frozen-in condition at the x-point. In addition, the electron-meandering-orbit scale controls the width of the electron dissipation region, where the electron temperature has been observed to increase both in recent Magnetospheric Multiple-Scale (MMS) observations and in laboratory experiments, such as the Magnetic Reconnection Experiment (MRX). By means of two-dimensional full-particle simulations in an open system, we investigate how the energy conversion and particle energization depend on the guide field intensity. We study the energy transfer from the magnetic field to the plasma in the vicinity of the x-point and close downstream regions, and E·J and the threshold guide field separating two regimes where either the parallel component, E||J||, or the perpendicular component, E⊥·J⊥, dominate the energy transfer, confirming recent MRX results and also consistent with MMS observations. We calculate the energy partition between fields and kinetic and thermal energies of different species, from electron to ion scales, showing that there is no significant variation for different guide field configurations. Finally, we study possible mechanisms for electron perpendicular heating by examining electron distribution functions and self-consistently evolved particle orbits in high guide field configurations.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5050992</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Activation ; Computer simulation ; Configurations ; Distribution functions ; Electron distribution ; Electron energy ; Electron pressure ; Energy conversion ; Energy dissipation ; Energy transfer ; Magnetic fields ; Magnetospheres ; Mathematical analysis ; Open systems ; Plasma physics ; Tensors</subject><ispartof>Physics of plasmas, 2018-12, Vol.25 (12)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-ca04e133bcb0942ce240ee8b382c41dc2c6eb845be20bf5210668375388414f73</citedby><cites>FETCH-LOGICAL-c393t-ca04e133bcb0942ce240ee8b382c41dc2c6eb845be20bf5210668375388414f73</cites><orcidid>0000-0001-6289-858X ; 0000-0003-3881-1995 ; 0000-0002-1636-3768 ; 0000-0002-8156-8233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5050992$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Pucci, F.</creatorcontrib><creatorcontrib>Usami, S.</creatorcontrib><creatorcontrib>Ji, H.</creatorcontrib><creatorcontrib>Guo, X.</creatorcontrib><creatorcontrib>Horiuchi, R.</creatorcontrib><creatorcontrib>Okamura, S.</creatorcontrib><creatorcontrib>Fox, W.</creatorcontrib><creatorcontrib>Jara-Almonte, J.</creatorcontrib><creatorcontrib>Yamada, M.</creatorcontrib><creatorcontrib>Yoo, J.</creatorcontrib><title>Energy transfer and electron energization in collisionless magnetic reconnection for different guide-field intensities</title><title>Physics of plasmas</title><description>Electron dynamics and energization are one of the key components of magnetic field dissipation in collisionless reconnection. In 2D numerical simulations of magnetic reconnection, the main mechanism that limits the current density and provides an effective dissipation is most probably the electron pressure tensor term, which has been shown to break the frozen-in condition at the x-point. In addition, the electron-meandering-orbit scale controls the width of the electron dissipation region, where the electron temperature has been observed to increase both in recent Magnetospheric Multiple-Scale (MMS) observations and in laboratory experiments, such as the Magnetic Reconnection Experiment (MRX). By means of two-dimensional full-particle simulations in an open system, we investigate how the energy conversion and particle energization depend on the guide field intensity. We study the energy transfer from the magnetic field to the plasma in the vicinity of the x-point and close downstream regions, and E·J and the threshold guide field separating two regimes where either the parallel component, E||J||, or the perpendicular component, E⊥·J⊥, dominate the energy transfer, confirming recent MRX results and also consistent with MMS observations. We calculate the energy partition between fields and kinetic and thermal energies of different species, from electron to ion scales, showing that there is no significant variation for different guide field configurations. Finally, we study possible mechanisms for electron perpendicular heating by examining electron distribution functions and self-consistently evolved particle orbits in high guide field configurations.</description><subject>Activation</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Distribution functions</subject><subject>Electron distribution</subject><subject>Electron energy</subject><subject>Electron pressure</subject><subject>Energy conversion</subject><subject>Energy dissipation</subject><subject>Energy transfer</subject><subject>Magnetic fields</subject><subject>Magnetospheres</subject><subject>Mathematical analysis</subject><subject>Open systems</subject><subject>Plasma physics</subject><subject>Tensors</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWZPOx2aOU-gEFLwrewm52UlK22ZqkhfrrzVrBu5eZeZln3oEXoWtKZpRIdk9ngghS1-UJmlCi6qKSFT8d54oUUvKPc3QR45oQwqVQE7RfeAirA06h8dFCwI3vMPRgUhg8hnHpvprksnAem6HvXcyihxjxpll5SM7gAGbwPt-MmB0C7pzNXuATXu1cB4V10HfZIIGPLjmIl-jMNn2Eq98-Re-Pi7f5c7F8fXqZPywLw2qWCtMQDpSx1rSk5qWBkhMA1TJVGk47UxoJreKihZK0VpQ5AqlYJZhSnHJbsSm6Ofpuw_C5g5j0etgFn1_qkopaEJlrpm6PlAlDjAGs3ga3acJBU6LHWDXVv7Fm9u7IRuPSTzD_g_dD-AP1trPsG6S5iF0</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Pucci, F.</creator><creator>Usami, S.</creator><creator>Ji, H.</creator><creator>Guo, X.</creator><creator>Horiuchi, R.</creator><creator>Okamura, S.</creator><creator>Fox, W.</creator><creator>Jara-Almonte, J.</creator><creator>Yamada, M.</creator><creator>Yoo, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6289-858X</orcidid><orcidid>https://orcid.org/0000-0003-3881-1995</orcidid><orcidid>https://orcid.org/0000-0002-1636-3768</orcidid><orcidid>https://orcid.org/0000-0002-8156-8233</orcidid></search><sort><creationdate>201812</creationdate><title>Energy transfer and electron energization in collisionless magnetic reconnection for different guide-field intensities</title><author>Pucci, F. ; Usami, S. ; Ji, H. ; Guo, X. ; Horiuchi, R. ; Okamura, S. ; Fox, W. ; Jara-Almonte, J. ; Yamada, M. ; Yoo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-ca04e133bcb0942ce240ee8b382c41dc2c6eb845be20bf5210668375388414f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Distribution functions</topic><topic>Electron distribution</topic><topic>Electron energy</topic><topic>Electron pressure</topic><topic>Energy conversion</topic><topic>Energy dissipation</topic><topic>Energy transfer</topic><topic>Magnetic fields</topic><topic>Magnetospheres</topic><topic>Mathematical analysis</topic><topic>Open systems</topic><topic>Plasma physics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pucci, F.</creatorcontrib><creatorcontrib>Usami, S.</creatorcontrib><creatorcontrib>Ji, H.</creatorcontrib><creatorcontrib>Guo, X.</creatorcontrib><creatorcontrib>Horiuchi, R.</creatorcontrib><creatorcontrib>Okamura, S.</creatorcontrib><creatorcontrib>Fox, W.</creatorcontrib><creatorcontrib>Jara-Almonte, J.</creatorcontrib><creatorcontrib>Yamada, M.</creatorcontrib><creatorcontrib>Yoo, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pucci, F.</au><au>Usami, S.</au><au>Ji, H.</au><au>Guo, X.</au><au>Horiuchi, R.</au><au>Okamura, S.</au><au>Fox, W.</au><au>Jara-Almonte, J.</au><au>Yamada, M.</au><au>Yoo, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy transfer and electron energization in collisionless magnetic reconnection for different guide-field intensities</atitle><jtitle>Physics of plasmas</jtitle><date>2018-12</date><risdate>2018</risdate><volume>25</volume><issue>12</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Electron dynamics and energization are one of the key components of magnetic field dissipation in collisionless reconnection. In 2D numerical simulations of magnetic reconnection, the main mechanism that limits the current density and provides an effective dissipation is most probably the electron pressure tensor term, which has been shown to break the frozen-in condition at the x-point. In addition, the electron-meandering-orbit scale controls the width of the electron dissipation region, where the electron temperature has been observed to increase both in recent Magnetospheric Multiple-Scale (MMS) observations and in laboratory experiments, such as the Magnetic Reconnection Experiment (MRX). By means of two-dimensional full-particle simulations in an open system, we investigate how the energy conversion and particle energization depend on the guide field intensity. We study the energy transfer from the magnetic field to the plasma in the vicinity of the x-point and close downstream regions, and E·J and the threshold guide field separating two regimes where either the parallel component, E||J||, or the perpendicular component, E⊥·J⊥, dominate the energy transfer, confirming recent MRX results and also consistent with MMS observations. We calculate the energy partition between fields and kinetic and thermal energies of different species, from electron to ion scales, showing that there is no significant variation for different guide field configurations. Finally, we study possible mechanisms for electron perpendicular heating by examining electron distribution functions and self-consistently evolved particle orbits in high guide field configurations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5050992</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6289-858X</orcidid><orcidid>https://orcid.org/0000-0003-3881-1995</orcidid><orcidid>https://orcid.org/0000-0002-1636-3768</orcidid><orcidid>https://orcid.org/0000-0002-8156-8233</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2018-12, Vol.25 (12)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_1_5050992
source AIP Journals Complete; Alma/SFX Local Collection
subjects Activation
Computer simulation
Configurations
Distribution functions
Electron distribution
Electron energy
Electron pressure
Energy conversion
Energy dissipation
Energy transfer
Magnetic fields
Magnetospheres
Mathematical analysis
Open systems
Plasma physics
Tensors
title Energy transfer and electron energization in collisionless magnetic reconnection for different guide-field intensities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20transfer%20and%20electron%20energization%20in%20collisionless%20magnetic%20reconnection%20for%20different%20guide-field%20intensities&rft.jtitle=Physics%20of%20plasmas&rft.au=Pucci,%20F.&rft.date=2018-12&rft.volume=25&rft.issue=12&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5050992&rft_dat=%3Cproquest_cross%3E2159506159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159506159&rft_id=info:pmid/&rfr_iscdi=true