Direct numerical simulation of high–temperature supersonic turbulent channel flow of equilibrium air

Direct numerical simulations (DNS) of high–temperature supersonic turbulent channel flow of equilibrium air are conducted at constant dimensional wall temperature 1733.2 K. The Mach number based on the bulk velocity and the speed of sound at the isothermal wall is 3.0, and the Reynolds number based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2018-11, Vol.8 (11), p.115325-115325-23
Hauptverfasser: Chen, Xiaoping, Kim, Heuy-Dong, Dou, Hua-Shu, Zhu, Zuchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115325-23
container_issue 11
container_start_page 115325
container_title AIP advances
container_volume 8
creator Chen, Xiaoping
Kim, Heuy-Dong
Dou, Hua-Shu
Zhu, Zuchao
description Direct numerical simulations (DNS) of high–temperature supersonic turbulent channel flow of equilibrium air are conducted at constant dimensional wall temperature 1733.2 K. The Mach number based on the bulk velocity and the speed of sound at the isothermal wall is 3.0, and the Reynolds number based on the bulk density, bulk velocity, channel half–width, and viscosity at the isothermal wall is 4880. Bidirectional coupling (BC) and unidirectional influence (UI) conditions are investigated, conditions which take account, respectively, of the influence of turbulence on chemistry and the influence of chemistry on turbulence, and just the influence of turbulence on chemistry. The reliability of the DNS data for the UI condition is verified by comparison with the results of Coleman et al. [J. Fluid Mech. 305, 159–183 (1995)]. The results of present research show that the many turbulent statistics and instantaneous structures which hold for calorically perfect gas also hold for equilibrium air, even for the BC condition. The coupling condition has no significant influence on the van Driest transformed mean velocity and turbulent kinetic energy budget. The magnitudes of the mean and fluctuating specific heat and enthalpy for the BC condition are larger than those for the UI condition. An inverted trend is observed for the temperature and dissociation degree. Compared with the UI condition, the near–wall streaks for the BC condition are arranged in a more spanwise manner, owing mainly to the increase in anisotropy ratios. The large–scale structures become small, sharp, and chaotic for the BC condition.
doi_str_mv 10.1063/1.5050657
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5050657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a883dc542b58425d84ac5669e048613d</doaj_id><sourcerecordid>2138312791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-cbc7fae56a0d58ef7cd8b59b4cd9d0d396a10696b76a57cc8be9b490a6ba5dfe3</originalsourceid><addsrcrecordid>eNp9kc1uFSEUxyemJjZtF74BiStNbgvDwMDStFWbNHGja3KAM73czAy3fMS48x36hj6JtLdpuvJsOHB-_M9X171n9JxRyS_YuaCCSjG-6Y57JtSG9708euW_685y3tFmg2ZUDcfddBUSukLWumAKDmaSw1JnKCGuJE5kG-62f_88FFz2mKDUhCTX5ua4Bkfa3dYZ10LcFtYVZzLN8dfjP7yvYQ42hboQCOm0ezvBnPHs-Tzpfn65_nH5bXP7_evN5efbjeOal42zbpwAhQTqhcJpdF5Zoe3gvPbUcy2hNaqlHSWI0TllsQU1BWlB-An5SXdz0PURdmafwgLpt4kQzNNDTHcGUgluRgNKce_E0Fuhhl54NYATUmqkg5KM-6b14aC1T_G-Yi5mF2taW_mmZ1xx1o-aNerjgXIp5pxwesnKqHncimHmeSuN_XRgswvlacT_gf8Bw_GO3A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138312791</pqid></control><display><type>article</type><title>Direct numerical simulation of high–temperature supersonic turbulent channel flow of equilibrium air</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Xiaoping ; Kim, Heuy-Dong ; Dou, Hua-Shu ; Zhu, Zuchao</creator><creatorcontrib>Chen, Xiaoping ; Kim, Heuy-Dong ; Dou, Hua-Shu ; Zhu, Zuchao</creatorcontrib><description>Direct numerical simulations (DNS) of high–temperature supersonic turbulent channel flow of equilibrium air are conducted at constant dimensional wall temperature 1733.2 K. The Mach number based on the bulk velocity and the speed of sound at the isothermal wall is 3.0, and the Reynolds number based on the bulk density, bulk velocity, channel half–width, and viscosity at the isothermal wall is 4880. Bidirectional coupling (BC) and unidirectional influence (UI) conditions are investigated, conditions which take account, respectively, of the influence of turbulence on chemistry and the influence of chemistry on turbulence, and just the influence of turbulence on chemistry. The reliability of the DNS data for the UI condition is verified by comparison with the results of Coleman et al. [J. Fluid Mech. 305, 159–183 (1995)]. The results of present research show that the many turbulent statistics and instantaneous structures which hold for calorically perfect gas also hold for equilibrium air, even for the BC condition. The coupling condition has no significant influence on the van Driest transformed mean velocity and turbulent kinetic energy budget. The magnitudes of the mean and fluctuating specific heat and enthalpy for the BC condition are larger than those for the UI condition. An inverted trend is observed for the temperature and dissociation degree. Compared with the UI condition, the near–wall streaks for the BC condition are arranged in a more spanwise manner, owing mainly to the increase in anisotropy ratios. The large–scale structures become small, sharp, and chaotic for the BC condition.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5050657</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Anisotropy ; Bulk density ; Channel flow ; Computational fluid dynamics ; Computer simulation ; Coupling ; Direct numerical simulation ; Energy budget ; Enthalpy ; Equilibrium ; Fluid flow ; Kinetic energy ; Mach number ; Organic chemistry ; Reliability aspects ; Reynolds number ; Turbulence ; Turbulent flow ; Variations ; Wall temperature</subject><ispartof>AIP advances, 2018-11, Vol.8 (11), p.115325-115325-23</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-cbc7fae56a0d58ef7cd8b59b4cd9d0d396a10696b76a57cc8be9b490a6ba5dfe3</citedby><cites>FETCH-LOGICAL-c393t-cbc7fae56a0d58ef7cd8b59b4cd9d0d396a10696b76a57cc8be9b490a6ba5dfe3</cites><orcidid>0000-0003-4260-5000 ; 0000-0001-6881-448X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,27905,27906</link.rule.ids></links><search><creatorcontrib>Chen, Xiaoping</creatorcontrib><creatorcontrib>Kim, Heuy-Dong</creatorcontrib><creatorcontrib>Dou, Hua-Shu</creatorcontrib><creatorcontrib>Zhu, Zuchao</creatorcontrib><title>Direct numerical simulation of high–temperature supersonic turbulent channel flow of equilibrium air</title><title>AIP advances</title><description>Direct numerical simulations (DNS) of high–temperature supersonic turbulent channel flow of equilibrium air are conducted at constant dimensional wall temperature 1733.2 K. The Mach number based on the bulk velocity and the speed of sound at the isothermal wall is 3.0, and the Reynolds number based on the bulk density, bulk velocity, channel half–width, and viscosity at the isothermal wall is 4880. Bidirectional coupling (BC) and unidirectional influence (UI) conditions are investigated, conditions which take account, respectively, of the influence of turbulence on chemistry and the influence of chemistry on turbulence, and just the influence of turbulence on chemistry. The reliability of the DNS data for the UI condition is verified by comparison with the results of Coleman et al. [J. Fluid Mech. 305, 159–183 (1995)]. The results of present research show that the many turbulent statistics and instantaneous structures which hold for calorically perfect gas also hold for equilibrium air, even for the BC condition. The coupling condition has no significant influence on the van Driest transformed mean velocity and turbulent kinetic energy budget. The magnitudes of the mean and fluctuating specific heat and enthalpy for the BC condition are larger than those for the UI condition. An inverted trend is observed for the temperature and dissociation degree. Compared with the UI condition, the near–wall streaks for the BC condition are arranged in a more spanwise manner, owing mainly to the increase in anisotropy ratios. The large–scale structures become small, sharp, and chaotic for the BC condition.</description><subject>Aerodynamics</subject><subject>Anisotropy</subject><subject>Bulk density</subject><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Direct numerical simulation</subject><subject>Energy budget</subject><subject>Enthalpy</subject><subject>Equilibrium</subject><subject>Fluid flow</subject><subject>Kinetic energy</subject><subject>Mach number</subject><subject>Organic chemistry</subject><subject>Reliability aspects</subject><subject>Reynolds number</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Variations</subject><subject>Wall temperature</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1uFSEUxyemJjZtF74BiStNbgvDwMDStFWbNHGja3KAM73czAy3fMS48x36hj6JtLdpuvJsOHB-_M9X171n9JxRyS_YuaCCSjG-6Y57JtSG9708euW_685y3tFmg2ZUDcfddBUSukLWumAKDmaSw1JnKCGuJE5kG-62f_88FFz2mKDUhCTX5ua4Bkfa3dYZ10LcFtYVZzLN8dfjP7yvYQ42hboQCOm0ezvBnPHs-Tzpfn65_nH5bXP7_evN5efbjeOal42zbpwAhQTqhcJpdF5Zoe3gvPbUcy2hNaqlHSWI0TllsQU1BWlB-An5SXdz0PURdmafwgLpt4kQzNNDTHcGUgluRgNKce_E0Fuhhl54NYATUmqkg5KM-6b14aC1T_G-Yi5mF2taW_mmZ1xx1o-aNerjgXIp5pxwesnKqHncimHmeSuN_XRgswvlacT_gf8Bw_GO3A</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Chen, Xiaoping</creator><creator>Kim, Heuy-Dong</creator><creator>Dou, Hua-Shu</creator><creator>Zhu, Zuchao</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4260-5000</orcidid><orcidid>https://orcid.org/0000-0001-6881-448X</orcidid></search><sort><creationdate>201811</creationdate><title>Direct numerical simulation of high–temperature supersonic turbulent channel flow of equilibrium air</title><author>Chen, Xiaoping ; Kim, Heuy-Dong ; Dou, Hua-Shu ; Zhu, Zuchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-cbc7fae56a0d58ef7cd8b59b4cd9d0d396a10696b76a57cc8be9b490a6ba5dfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Anisotropy</topic><topic>Bulk density</topic><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Direct numerical simulation</topic><topic>Energy budget</topic><topic>Enthalpy</topic><topic>Equilibrium</topic><topic>Fluid flow</topic><topic>Kinetic energy</topic><topic>Mach number</topic><topic>Organic chemistry</topic><topic>Reliability aspects</topic><topic>Reynolds number</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Variations</topic><topic>Wall temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoping</creatorcontrib><creatorcontrib>Kim, Heuy-Dong</creatorcontrib><creatorcontrib>Dou, Hua-Shu</creatorcontrib><creatorcontrib>Zhu, Zuchao</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoping</au><au>Kim, Heuy-Dong</au><au>Dou, Hua-Shu</au><au>Zhu, Zuchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct numerical simulation of high–temperature supersonic turbulent channel flow of equilibrium air</atitle><jtitle>AIP advances</jtitle><date>2018-11</date><risdate>2018</risdate><volume>8</volume><issue>11</issue><spage>115325</spage><epage>115325-23</epage><pages>115325-115325-23</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Direct numerical simulations (DNS) of high–temperature supersonic turbulent channel flow of equilibrium air are conducted at constant dimensional wall temperature 1733.2 K. The Mach number based on the bulk velocity and the speed of sound at the isothermal wall is 3.0, and the Reynolds number based on the bulk density, bulk velocity, channel half–width, and viscosity at the isothermal wall is 4880. Bidirectional coupling (BC) and unidirectional influence (UI) conditions are investigated, conditions which take account, respectively, of the influence of turbulence on chemistry and the influence of chemistry on turbulence, and just the influence of turbulence on chemistry. The reliability of the DNS data for the UI condition is verified by comparison with the results of Coleman et al. [J. Fluid Mech. 305, 159–183 (1995)]. The results of present research show that the many turbulent statistics and instantaneous structures which hold for calorically perfect gas also hold for equilibrium air, even for the BC condition. The coupling condition has no significant influence on the van Driest transformed mean velocity and turbulent kinetic energy budget. The magnitudes of the mean and fluctuating specific heat and enthalpy for the BC condition are larger than those for the UI condition. An inverted trend is observed for the temperature and dissociation degree. Compared with the UI condition, the near–wall streaks for the BC condition are arranged in a more spanwise manner, owing mainly to the increase in anisotropy ratios. The large–scale structures become small, sharp, and chaotic for the BC condition.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5050657</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4260-5000</orcidid><orcidid>https://orcid.org/0000-0001-6881-448X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2018-11, Vol.8 (11), p.115325-115325-23
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_1_5050657
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aerodynamics
Anisotropy
Bulk density
Channel flow
Computational fluid dynamics
Computer simulation
Coupling
Direct numerical simulation
Energy budget
Enthalpy
Equilibrium
Fluid flow
Kinetic energy
Mach number
Organic chemistry
Reliability aspects
Reynolds number
Turbulence
Turbulent flow
Variations
Wall temperature
title Direct numerical simulation of high–temperature supersonic turbulent channel flow of equilibrium air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20numerical%20simulation%20of%20high%E2%80%93temperature%20supersonic%20turbulent%20channel%20flow%20of%20equilibrium%20air&rft.jtitle=AIP%20advances&rft.au=Chen,%20Xiaoping&rft.date=2018-11&rft.volume=8&rft.issue=11&rft.spage=115325&rft.epage=115325-23&rft.pages=115325-115325-23&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5050657&rft_dat=%3Cproquest_cross%3E2138312791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138312791&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a883dc542b58425d84ac5669e048613d&rfr_iscdi=true