Toward cascadable microelectromechanical resonator logic units based on second vibration modes

Micro/nano-electromechanical resonator-based logic elements have revitalized the notion of mechanical computing as a potential alternative to surpass the limitations of semiconductor electronics. A vital step forward for this technology is to develop a platform for cascadable logic units that commun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2018-10, Vol.8 (10), p.105126-105126-6
Hauptverfasser: Ilyas, S., Hafiz, Md. A. A., Ahmed, S., Fariborzi, H., Younis, M. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105126-6
container_issue 10
container_start_page 105126
container_title AIP advances
container_volume 8
creator Ilyas, S.
Hafiz, Md. A. A.
Ahmed, S.
Fariborzi, H.
Younis, M. I.
description Micro/nano-electromechanical resonator-based logic elements have revitalized the notion of mechanical computing as a potential alternative to surpass the limitations of semiconductor electronics. A vital step forward for this technology is to develop a platform for cascadable logic units that communicate among each other executable signals of the same form; which is key to construct true and complex computation machines. Here, we utilize the dynamic characteristics of a clamped-clamped microbeam vibrating at the second resonance mode to realize cascadable logic elements. The logic operations are performed by on-demand activation and deactivation of the second mode of vibration of a clamped-clamped microbeam resonator. Fundamental logic gates, such as OR, XOR, and NOT, which constitute a functionally complete set for digital applications are demonstrated experimentally. We show that the demonstrated approach unifies the input and output signal waveform and performs all the gate operations on a single operating frequency, hence satisfying the prerequisites to realize cascadable resonator logic devices. This can potentially pave the way for the development of a novel technology platform for an alternative computing paradigm.
doi_str_mv 10.1063/1.5049875
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5049875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9309be84e106460bb3383657f11e0636</doaj_id><sourcerecordid>2123975272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e8b5dea3d4474a96cb1386122881eaf3162854c53830dfba25d306a36d652c93</originalsourceid><addsrcrecordid>eNp9kc1KLDEQRhu5gqIufIOAK4UZ89_ppci9KghuZm2oJNWaoaczJj3KfXujIyoIZlOhOJwqvmqaY0bnjGpxzuaKys60aqfZ50yZmeBc__n232uOSlnS-mTHqJH7zf0ivUAOxEPxEMANSFbR54QD-imnFfpHGKOHgWQsaYQpZTKkh-jJZoxTIQ4KBpJGUtCnMZDn6DJMsTZWKWA5bHZ7GAoefdSDZvHv7-LyenZ7d3VzeXE785KbaYbGqYAggpSthE57x4TRjHNjGEIvmOZGSa-EETT0DrgKgmoQOmjFfScOmputNiRY2nWOK8j_bYJo3xspP1jIU_QD2k7QzqGRWBOTmjonqlSrtmcMa4a6uk62rnVOTxssk12mTR7r9pYzLrpW8ZZX6nRL1axKydh_TmXUvh3DMvtxjMqebdni4_Qezif8nPIXaNeh_w3-aX4FqV-Wyw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123975272</pqid></control><display><type>article</type><title>Toward cascadable microelectromechanical resonator logic units based on second vibration modes</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ilyas, S. ; Hafiz, Md. A. A. ; Ahmed, S. ; Fariborzi, H. ; Younis, M. I.</creator><creatorcontrib>Ilyas, S. ; Hafiz, Md. A. A. ; Ahmed, S. ; Fariborzi, H. ; Younis, M. I.</creatorcontrib><description>Micro/nano-electromechanical resonator-based logic elements have revitalized the notion of mechanical computing as a potential alternative to surpass the limitations of semiconductor electronics. A vital step forward for this technology is to develop a platform for cascadable logic units that communicate among each other executable signals of the same form; which is key to construct true and complex computation machines. Here, we utilize the dynamic characteristics of a clamped-clamped microbeam vibrating at the second resonance mode to realize cascadable logic elements. The logic operations are performed by on-demand activation and deactivation of the second mode of vibration of a clamped-clamped microbeam resonator. Fundamental logic gates, such as OR, XOR, and NOT, which constitute a functionally complete set for digital applications are demonstrated experimentally. We show that the demonstrated approach unifies the input and output signal waveform and performs all the gate operations on a single operating frequency, hence satisfying the prerequisites to realize cascadable resonator logic devices. This can potentially pave the way for the development of a novel technology platform for an alternative computing paradigm.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5049875</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computation ; Deactivation ; Dynamic characteristics ; Field programmable gate arrays ; Logic circuits ; Microbeams ; Regeneration ; Resonators ; Vibration mode</subject><ispartof>AIP advances, 2018-10, Vol.8 (10), p.105126-105126-6</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e8b5dea3d4474a96cb1386122881eaf3162854c53830dfba25d306a36d652c93</citedby><cites>FETCH-LOGICAL-c428t-e8b5dea3d4474a96cb1386122881eaf3162854c53830dfba25d306a36d652c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Ilyas, S.</creatorcontrib><creatorcontrib>Hafiz, Md. A. A.</creatorcontrib><creatorcontrib>Ahmed, S.</creatorcontrib><creatorcontrib>Fariborzi, H.</creatorcontrib><creatorcontrib>Younis, M. I.</creatorcontrib><title>Toward cascadable microelectromechanical resonator logic units based on second vibration modes</title><title>AIP advances</title><description>Micro/nano-electromechanical resonator-based logic elements have revitalized the notion of mechanical computing as a potential alternative to surpass the limitations of semiconductor electronics. A vital step forward for this technology is to develop a platform for cascadable logic units that communicate among each other executable signals of the same form; which is key to construct true and complex computation machines. Here, we utilize the dynamic characteristics of a clamped-clamped microbeam vibrating at the second resonance mode to realize cascadable logic elements. The logic operations are performed by on-demand activation and deactivation of the second mode of vibration of a clamped-clamped microbeam resonator. Fundamental logic gates, such as OR, XOR, and NOT, which constitute a functionally complete set for digital applications are demonstrated experimentally. We show that the demonstrated approach unifies the input and output signal waveform and performs all the gate operations on a single operating frequency, hence satisfying the prerequisites to realize cascadable resonator logic devices. This can potentially pave the way for the development of a novel technology platform for an alternative computing paradigm.</description><subject>Computation</subject><subject>Deactivation</subject><subject>Dynamic characteristics</subject><subject>Field programmable gate arrays</subject><subject>Logic circuits</subject><subject>Microbeams</subject><subject>Regeneration</subject><subject>Resonators</subject><subject>Vibration mode</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1KLDEQRhu5gqIufIOAK4UZ89_ppci9KghuZm2oJNWaoaczJj3KfXujIyoIZlOhOJwqvmqaY0bnjGpxzuaKys60aqfZ50yZmeBc__n232uOSlnS-mTHqJH7zf0ivUAOxEPxEMANSFbR54QD-imnFfpHGKOHgWQsaYQpZTKkh-jJZoxTIQ4KBpJGUtCnMZDn6DJMsTZWKWA5bHZ7GAoefdSDZvHv7-LyenZ7d3VzeXE785KbaYbGqYAggpSthE57x4TRjHNjGEIvmOZGSa-EETT0DrgKgmoQOmjFfScOmputNiRY2nWOK8j_bYJo3xspP1jIU_QD2k7QzqGRWBOTmjonqlSrtmcMa4a6uk62rnVOTxssk12mTR7r9pYzLrpW8ZZX6nRL1axKydh_TmXUvh3DMvtxjMqebdni4_Qezif8nPIXaNeh_w3-aX4FqV-Wyw</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Ilyas, S.</creator><creator>Hafiz, Md. A. A.</creator><creator>Ahmed, S.</creator><creator>Fariborzi, H.</creator><creator>Younis, M. I.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>201810</creationdate><title>Toward cascadable microelectromechanical resonator logic units based on second vibration modes</title><author>Ilyas, S. ; Hafiz, Md. A. A. ; Ahmed, S. ; Fariborzi, H. ; Younis, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e8b5dea3d4474a96cb1386122881eaf3162854c53830dfba25d306a36d652c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computation</topic><topic>Deactivation</topic><topic>Dynamic characteristics</topic><topic>Field programmable gate arrays</topic><topic>Logic circuits</topic><topic>Microbeams</topic><topic>Regeneration</topic><topic>Resonators</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilyas, S.</creatorcontrib><creatorcontrib>Hafiz, Md. A. A.</creatorcontrib><creatorcontrib>Ahmed, S.</creatorcontrib><creatorcontrib>Fariborzi, H.</creatorcontrib><creatorcontrib>Younis, M. I.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilyas, S.</au><au>Hafiz, Md. A. A.</au><au>Ahmed, S.</au><au>Fariborzi, H.</au><au>Younis, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward cascadable microelectromechanical resonator logic units based on second vibration modes</atitle><jtitle>AIP advances</jtitle><date>2018-10</date><risdate>2018</risdate><volume>8</volume><issue>10</issue><spage>105126</spage><epage>105126-6</epage><pages>105126-105126-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Micro/nano-electromechanical resonator-based logic elements have revitalized the notion of mechanical computing as a potential alternative to surpass the limitations of semiconductor electronics. A vital step forward for this technology is to develop a platform for cascadable logic units that communicate among each other executable signals of the same form; which is key to construct true and complex computation machines. Here, we utilize the dynamic characteristics of a clamped-clamped microbeam vibrating at the second resonance mode to realize cascadable logic elements. The logic operations are performed by on-demand activation and deactivation of the second mode of vibration of a clamped-clamped microbeam resonator. Fundamental logic gates, such as OR, XOR, and NOT, which constitute a functionally complete set for digital applications are demonstrated experimentally. We show that the demonstrated approach unifies the input and output signal waveform and performs all the gate operations on a single operating frequency, hence satisfying the prerequisites to realize cascadable resonator logic devices. This can potentially pave the way for the development of a novel technology platform for an alternative computing paradigm.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5049875</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2018-10, Vol.8 (10), p.105126-105126-6
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_1_5049875
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Computation
Deactivation
Dynamic characteristics
Field programmable gate arrays
Logic circuits
Microbeams
Regeneration
Resonators
Vibration mode
title Toward cascadable microelectromechanical resonator logic units based on second vibration modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20cascadable%20microelectromechanical%20resonator%20logic%20units%20based%20on%20second%20vibration%20modes&rft.jtitle=AIP%20advances&rft.au=Ilyas,%20S.&rft.date=2018-10&rft.volume=8&rft.issue=10&rft.spage=105126&rft.epage=105126-6&rft.pages=105126-105126-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5049875&rft_dat=%3Cproquest_cross%3E2123975272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123975272&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_9309be84e106460bb3383657f11e0636&rfr_iscdi=true