Toward cascadable microelectromechanical resonator logic units based on second vibration modes
Micro/nano-electromechanical resonator-based logic elements have revitalized the notion of mechanical computing as a potential alternative to surpass the limitations of semiconductor electronics. A vital step forward for this technology is to develop a platform for cascadable logic units that commun...
Gespeichert in:
Veröffentlicht in: | AIP advances 2018-10, Vol.8 (10), p.105126-105126-6 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105126-6 |
---|---|
container_issue | 10 |
container_start_page | 105126 |
container_title | AIP advances |
container_volume | 8 |
creator | Ilyas, S. Hafiz, Md. A. A. Ahmed, S. Fariborzi, H. Younis, M. I. |
description | Micro/nano-electromechanical resonator-based logic elements have revitalized the notion of mechanical computing as a potential alternative to surpass the limitations of semiconductor electronics. A vital step forward for this technology is to develop a platform for cascadable logic units that communicate among each other executable signals of the same form; which is key to construct true and complex computation machines. Here, we utilize the dynamic characteristics of a clamped-clamped microbeam vibrating at the second resonance mode to realize cascadable logic elements. The logic operations are performed by on-demand activation and deactivation of the second mode of vibration of a clamped-clamped microbeam resonator. Fundamental logic gates, such as OR, XOR, and NOT, which constitute a functionally complete set for digital applications are demonstrated experimentally. We show that the demonstrated approach unifies the input and output signal waveform and performs all the gate operations on a single operating frequency, hence satisfying the prerequisites to realize cascadable resonator logic devices. This can potentially pave the way for the development of a novel technology platform for an alternative computing paradigm. |
doi_str_mv | 10.1063/1.5049875 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5049875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9309be84e106460bb3383657f11e0636</doaj_id><sourcerecordid>2123975272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e8b5dea3d4474a96cb1386122881eaf3162854c53830dfba25d306a36d652c93</originalsourceid><addsrcrecordid>eNp9kc1KLDEQRhu5gqIufIOAK4UZ89_ppci9KghuZm2oJNWaoaczJj3KfXujIyoIZlOhOJwqvmqaY0bnjGpxzuaKys60aqfZ50yZmeBc__n232uOSlnS-mTHqJH7zf0ivUAOxEPxEMANSFbR54QD-imnFfpHGKOHgWQsaYQpZTKkh-jJZoxTIQ4KBpJGUtCnMZDn6DJMsTZWKWA5bHZ7GAoefdSDZvHv7-LyenZ7d3VzeXE785KbaYbGqYAggpSthE57x4TRjHNjGEIvmOZGSa-EETT0DrgKgmoQOmjFfScOmputNiRY2nWOK8j_bYJo3xspP1jIU_QD2k7QzqGRWBOTmjonqlSrtmcMa4a6uk62rnVOTxssk12mTR7r9pYzLrpW8ZZX6nRL1axKydh_TmXUvh3DMvtxjMqebdni4_Qezif8nPIXaNeh_w3-aX4FqV-Wyw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123975272</pqid></control><display><type>article</type><title>Toward cascadable microelectromechanical resonator logic units based on second vibration modes</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ilyas, S. ; Hafiz, Md. A. A. ; Ahmed, S. ; Fariborzi, H. ; Younis, M. I.</creator><creatorcontrib>Ilyas, S. ; Hafiz, Md. A. A. ; Ahmed, S. ; Fariborzi, H. ; Younis, M. I.</creatorcontrib><description>Micro/nano-electromechanical resonator-based logic elements have revitalized the notion of mechanical computing as a potential alternative to surpass the limitations of semiconductor electronics. A vital step forward for this technology is to develop a platform for cascadable logic units that communicate among each other executable signals of the same form; which is key to construct true and complex computation machines. Here, we utilize the dynamic characteristics of a clamped-clamped microbeam vibrating at the second resonance mode to realize cascadable logic elements. The logic operations are performed by on-demand activation and deactivation of the second mode of vibration of a clamped-clamped microbeam resonator. Fundamental logic gates, such as OR, XOR, and NOT, which constitute a functionally complete set for digital applications are demonstrated experimentally. We show that the demonstrated approach unifies the input and output signal waveform and performs all the gate operations on a single operating frequency, hence satisfying the prerequisites to realize cascadable resonator logic devices. This can potentially pave the way for the development of a novel technology platform for an alternative computing paradigm.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5049875</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computation ; Deactivation ; Dynamic characteristics ; Field programmable gate arrays ; Logic circuits ; Microbeams ; Regeneration ; Resonators ; Vibration mode</subject><ispartof>AIP advances, 2018-10, Vol.8 (10), p.105126-105126-6</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e8b5dea3d4474a96cb1386122881eaf3162854c53830dfba25d306a36d652c93</citedby><cites>FETCH-LOGICAL-c428t-e8b5dea3d4474a96cb1386122881eaf3162854c53830dfba25d306a36d652c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Ilyas, S.</creatorcontrib><creatorcontrib>Hafiz, Md. A. A.</creatorcontrib><creatorcontrib>Ahmed, S.</creatorcontrib><creatorcontrib>Fariborzi, H.</creatorcontrib><creatorcontrib>Younis, M. I.</creatorcontrib><title>Toward cascadable microelectromechanical resonator logic units based on second vibration modes</title><title>AIP advances</title><description>Micro/nano-electromechanical resonator-based logic elements have revitalized the notion of mechanical computing as a potential alternative to surpass the limitations of semiconductor electronics. A vital step forward for this technology is to develop a platform for cascadable logic units that communicate among each other executable signals of the same form; which is key to construct true and complex computation machines. Here, we utilize the dynamic characteristics of a clamped-clamped microbeam vibrating at the second resonance mode to realize cascadable logic elements. The logic operations are performed by on-demand activation and deactivation of the second mode of vibration of a clamped-clamped microbeam resonator. Fundamental logic gates, such as OR, XOR, and NOT, which constitute a functionally complete set for digital applications are demonstrated experimentally. We show that the demonstrated approach unifies the input and output signal waveform and performs all the gate operations on a single operating frequency, hence satisfying the prerequisites to realize cascadable resonator logic devices. This can potentially pave the way for the development of a novel technology platform for an alternative computing paradigm.</description><subject>Computation</subject><subject>Deactivation</subject><subject>Dynamic characteristics</subject><subject>Field programmable gate arrays</subject><subject>Logic circuits</subject><subject>Microbeams</subject><subject>Regeneration</subject><subject>Resonators</subject><subject>Vibration mode</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1KLDEQRhu5gqIufIOAK4UZ89_ppci9KghuZm2oJNWaoaczJj3KfXujIyoIZlOhOJwqvmqaY0bnjGpxzuaKys60aqfZ50yZmeBc__n232uOSlnS-mTHqJH7zf0ivUAOxEPxEMANSFbR54QD-imnFfpHGKOHgWQsaYQpZTKkh-jJZoxTIQ4KBpJGUtCnMZDn6DJMsTZWKWA5bHZ7GAoefdSDZvHv7-LyenZ7d3VzeXE785KbaYbGqYAggpSthE57x4TRjHNjGEIvmOZGSa-EETT0DrgKgmoQOmjFfScOmputNiRY2nWOK8j_bYJo3xspP1jIU_QD2k7QzqGRWBOTmjonqlSrtmcMa4a6uk62rnVOTxssk12mTR7r9pYzLrpW8ZZX6nRL1axKydh_TmXUvh3DMvtxjMqebdni4_Qezif8nPIXaNeh_w3-aX4FqV-Wyw</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Ilyas, S.</creator><creator>Hafiz, Md. A. A.</creator><creator>Ahmed, S.</creator><creator>Fariborzi, H.</creator><creator>Younis, M. I.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>201810</creationdate><title>Toward cascadable microelectromechanical resonator logic units based on second vibration modes</title><author>Ilyas, S. ; Hafiz, Md. A. A. ; Ahmed, S. ; Fariborzi, H. ; Younis, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e8b5dea3d4474a96cb1386122881eaf3162854c53830dfba25d306a36d652c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computation</topic><topic>Deactivation</topic><topic>Dynamic characteristics</topic><topic>Field programmable gate arrays</topic><topic>Logic circuits</topic><topic>Microbeams</topic><topic>Regeneration</topic><topic>Resonators</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilyas, S.</creatorcontrib><creatorcontrib>Hafiz, Md. A. A.</creatorcontrib><creatorcontrib>Ahmed, S.</creatorcontrib><creatorcontrib>Fariborzi, H.</creatorcontrib><creatorcontrib>Younis, M. I.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilyas, S.</au><au>Hafiz, Md. A. A.</au><au>Ahmed, S.</au><au>Fariborzi, H.</au><au>Younis, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward cascadable microelectromechanical resonator logic units based on second vibration modes</atitle><jtitle>AIP advances</jtitle><date>2018-10</date><risdate>2018</risdate><volume>8</volume><issue>10</issue><spage>105126</spage><epage>105126-6</epage><pages>105126-105126-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Micro/nano-electromechanical resonator-based logic elements have revitalized the notion of mechanical computing as a potential alternative to surpass the limitations of semiconductor electronics. A vital step forward for this technology is to develop a platform for cascadable logic units that communicate among each other executable signals of the same form; which is key to construct true and complex computation machines. Here, we utilize the dynamic characteristics of a clamped-clamped microbeam vibrating at the second resonance mode to realize cascadable logic elements. The logic operations are performed by on-demand activation and deactivation of the second mode of vibration of a clamped-clamped microbeam resonator. Fundamental logic gates, such as OR, XOR, and NOT, which constitute a functionally complete set for digital applications are demonstrated experimentally. We show that the demonstrated approach unifies the input and output signal waveform and performs all the gate operations on a single operating frequency, hence satisfying the prerequisites to realize cascadable resonator logic devices. This can potentially pave the way for the development of a novel technology platform for an alternative computing paradigm.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5049875</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2018-10, Vol.8 (10), p.105126-105126-6 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5049875 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Computation Deactivation Dynamic characteristics Field programmable gate arrays Logic circuits Microbeams Regeneration Resonators Vibration mode |
title | Toward cascadable microelectromechanical resonator logic units based on second vibration modes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20cascadable%20microelectromechanical%20resonator%20logic%20units%20based%20on%20second%20vibration%20modes&rft.jtitle=AIP%20advances&rft.au=Ilyas,%20S.&rft.date=2018-10&rft.volume=8&rft.issue=10&rft.spage=105126&rft.epage=105126-6&rft.pages=105126-105126-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5049875&rft_dat=%3Cproquest_cross%3E2123975272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123975272&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_9309be84e106460bb3383657f11e0636&rfr_iscdi=true |