Magnon-impurity interaction effect on the magnonic heat capacity of the Lieb lattice

In this paper, we theoretically address the magnonic heat capacity of charged impurity-infected infinite 2D Lieb lattice with new interesting features to be seen. The dynamics of non-interacting and interacting magnons are described by the Heisenberg model, the Born approximation, and the Green’s fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2018-12, Vol.8 (12), p.125317-125317-12
Hauptverfasser: Le, P. T. T., Hoi, B. D., Yarmohammadi, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125317-12
container_issue 12
container_start_page 125317
container_title AIP advances
container_volume 8
creator Le, P. T. T.
Hoi, B. D.
Yarmohammadi, Mohsen
description In this paper, we theoretically address the magnonic heat capacity of charged impurity-infected infinite 2D Lieb lattice with new interesting features to be seen. The dynamics of non-interacting and interacting magnons are described by the Heisenberg model, the Born approximation, and the Green’s function technique. The used model consists of three potentials, satisfying the experiment requirements: (i) the Dzyaloshinskii-Moriya interaction (DMI), (ii) the next-nearest-neighbors (NNN) coupling, and (iii) the Zeeman magnetic field. We show that the magnonic heat capacity increases with the charged impurity concentration and/or the scattering potential. We realized that the infecting the system with different impurity atoms yields the higher magnonic heat capacity than the same ones. Furthermore, we show that both normal and perturbed magnonic heat capacities do not alter for heavy atomic nuclei. The obtained numerical data state that the efficient magnonic heat capacity occurs at short-range potentials and do not change for longer-range ones. This manifest itself at long-ranges as a plateau for DMI potential and the oscillatory accompanied with decay trends for NNN coupling and the Zeeman magnetic field. Finally, we observe the non-monotonic and non-symmetric behaviors for heat capacity when Zeeman magnetic field is parallel and/or antiparallel to the host spins.
doi_str_mv 10.1063/1.5046675
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5046675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2b69de455e574b0f9a599ada95a033a6</doaj_id><sourcerecordid>2153808028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e5b50349421378fa87eb50aaeaae1d9217ddefb38084328e6d313233bd6420953</originalsourceid><addsrcrecordid>eNqdkUtLxDAUhYMoKDoL_0HBlUI1z7ZZiviCETe6DrfNzUyGmaamGcF_b-aBujYEcrn5cnI4l5BzRq8ZrcQNu1ZUVlWtDsgJZ6opBefV4Z_6mEzGcUHzkprRRp6QtxeY9aEv_WpYR5--Ct8njNAlH_oCncMuFblKcyxWW9J3xRwhFR0M0G0eBLe9nXpsiyWk5Ds8I0cOliNO9ucpeX-4f7t7Kqevj893t9Oyk7xJJapWUSG15EzUjYOmxtwAwLyZ1ZzV1qJrRZOdCt5gZQUTXIjWVpJTrcQped7p2gALM0S_gvhlAnizbYQ4MxCzoSUa3lbaolQKVS1b6jQorcGCVkCFgCprXey0hhg-1jgmswjr2Gf7Jse38UB5k6nLHdXFMI4R3c-vjJrNDAwz-xlk9mrHjjkn2AT6P_gzxF_QDNaJb0sxk0M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153808028</pqid></control><display><type>article</type><title>Magnon-impurity interaction effect on the magnonic heat capacity of the Lieb lattice</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Le, P. T. T. ; Hoi, B. D. ; Yarmohammadi, Mohsen</creator><creatorcontrib>Le, P. T. T. ; Hoi, B. D. ; Yarmohammadi, Mohsen</creatorcontrib><description>In this paper, we theoretically address the magnonic heat capacity of charged impurity-infected infinite 2D Lieb lattice with new interesting features to be seen. The dynamics of non-interacting and interacting magnons are described by the Heisenberg model, the Born approximation, and the Green’s function technique. The used model consists of three potentials, satisfying the experiment requirements: (i) the Dzyaloshinskii-Moriya interaction (DMI), (ii) the next-nearest-neighbors (NNN) coupling, and (iii) the Zeeman magnetic field. We show that the magnonic heat capacity increases with the charged impurity concentration and/or the scattering potential. We realized that the infecting the system with different impurity atoms yields the higher magnonic heat capacity than the same ones. Furthermore, we show that both normal and perturbed magnonic heat capacities do not alter for heavy atomic nuclei. The obtained numerical data state that the efficient magnonic heat capacity occurs at short-range potentials and do not change for longer-range ones. This manifest itself at long-ranges as a plateau for DMI potential and the oscillatory accompanied with decay trends for NNN coupling and the Zeeman magnetic field. Finally, we observe the non-monotonic and non-symmetric behaviors for heat capacity when Zeeman magnetic field is parallel and/or antiparallel to the host spins.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5046675</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Born approximation ; Coupling ; Heisenberg theory ; Impurities ; Magnetic fields ; Magnons ; Nuclei (nuclear physics) ; Specific heat ; Statistical models</subject><ispartof>AIP advances, 2018-12, Vol.8 (12), p.125317-125317-12</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e5b50349421378fa87eb50aaeaae1d9217ddefb38084328e6d313233bd6420953</citedby><cites>FETCH-LOGICAL-c428t-e5b50349421378fa87eb50aaeaae1d9217ddefb38084328e6d313233bd6420953</cites><orcidid>0000-0002-5480-7569 ; 0000-0002-5174-841X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2106,27933,27934</link.rule.ids></links><search><creatorcontrib>Le, P. T. T.</creatorcontrib><creatorcontrib>Hoi, B. D.</creatorcontrib><creatorcontrib>Yarmohammadi, Mohsen</creatorcontrib><title>Magnon-impurity interaction effect on the magnonic heat capacity of the Lieb lattice</title><title>AIP advances</title><description>In this paper, we theoretically address the magnonic heat capacity of charged impurity-infected infinite 2D Lieb lattice with new interesting features to be seen. The dynamics of non-interacting and interacting magnons are described by the Heisenberg model, the Born approximation, and the Green’s function technique. The used model consists of three potentials, satisfying the experiment requirements: (i) the Dzyaloshinskii-Moriya interaction (DMI), (ii) the next-nearest-neighbors (NNN) coupling, and (iii) the Zeeman magnetic field. We show that the magnonic heat capacity increases with the charged impurity concentration and/or the scattering potential. We realized that the infecting the system with different impurity atoms yields the higher magnonic heat capacity than the same ones. Furthermore, we show that both normal and perturbed magnonic heat capacities do not alter for heavy atomic nuclei. The obtained numerical data state that the efficient magnonic heat capacity occurs at short-range potentials and do not change for longer-range ones. This manifest itself at long-ranges as a plateau for DMI potential and the oscillatory accompanied with decay trends for NNN coupling and the Zeeman magnetic field. Finally, we observe the non-monotonic and non-symmetric behaviors for heat capacity when Zeeman magnetic field is parallel and/or antiparallel to the host spins.</description><subject>Born approximation</subject><subject>Coupling</subject><subject>Heisenberg theory</subject><subject>Impurities</subject><subject>Magnetic fields</subject><subject>Magnons</subject><subject>Nuclei (nuclear physics)</subject><subject>Specific heat</subject><subject>Statistical models</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkUtLxDAUhYMoKDoL_0HBlUI1z7ZZiviCETe6DrfNzUyGmaamGcF_b-aBujYEcrn5cnI4l5BzRq8ZrcQNu1ZUVlWtDsgJZ6opBefV4Z_6mEzGcUHzkprRRp6QtxeY9aEv_WpYR5--Ct8njNAlH_oCncMuFblKcyxWW9J3xRwhFR0M0G0eBLe9nXpsiyWk5Ds8I0cOliNO9ucpeX-4f7t7Kqevj893t9Oyk7xJJapWUSG15EzUjYOmxtwAwLyZ1ZzV1qJrRZOdCt5gZQUTXIjWVpJTrcQped7p2gALM0S_gvhlAnizbYQ4MxCzoSUa3lbaolQKVS1b6jQorcGCVkCFgCprXey0hhg-1jgmswjr2Gf7Jse38UB5k6nLHdXFMI4R3c-vjJrNDAwz-xlk9mrHjjkn2AT6P_gzxF_QDNaJb0sxk0M</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Le, P. T. T.</creator><creator>Hoi, B. D.</creator><creator>Yarmohammadi, Mohsen</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5480-7569</orcidid><orcidid>https://orcid.org/0000-0002-5174-841X</orcidid></search><sort><creationdate>201812</creationdate><title>Magnon-impurity interaction effect on the magnonic heat capacity of the Lieb lattice</title><author>Le, P. T. T. ; Hoi, B. D. ; Yarmohammadi, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e5b50349421378fa87eb50aaeaae1d9217ddefb38084328e6d313233bd6420953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Born approximation</topic><topic>Coupling</topic><topic>Heisenberg theory</topic><topic>Impurities</topic><topic>Magnetic fields</topic><topic>Magnons</topic><topic>Nuclei (nuclear physics)</topic><topic>Specific heat</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, P. T. T.</creatorcontrib><creatorcontrib>Hoi, B. D.</creatorcontrib><creatorcontrib>Yarmohammadi, Mohsen</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, P. T. T.</au><au>Hoi, B. D.</au><au>Yarmohammadi, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnon-impurity interaction effect on the magnonic heat capacity of the Lieb lattice</atitle><jtitle>AIP advances</jtitle><date>2018-12</date><risdate>2018</risdate><volume>8</volume><issue>12</issue><spage>125317</spage><epage>125317-12</epage><pages>125317-125317-12</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>In this paper, we theoretically address the magnonic heat capacity of charged impurity-infected infinite 2D Lieb lattice with new interesting features to be seen. The dynamics of non-interacting and interacting magnons are described by the Heisenberg model, the Born approximation, and the Green’s function technique. The used model consists of three potentials, satisfying the experiment requirements: (i) the Dzyaloshinskii-Moriya interaction (DMI), (ii) the next-nearest-neighbors (NNN) coupling, and (iii) the Zeeman magnetic field. We show that the magnonic heat capacity increases with the charged impurity concentration and/or the scattering potential. We realized that the infecting the system with different impurity atoms yields the higher magnonic heat capacity than the same ones. Furthermore, we show that both normal and perturbed magnonic heat capacities do not alter for heavy atomic nuclei. The obtained numerical data state that the efficient magnonic heat capacity occurs at short-range potentials and do not change for longer-range ones. This manifest itself at long-ranges as a plateau for DMI potential and the oscillatory accompanied with decay trends for NNN coupling and the Zeeman magnetic field. Finally, we observe the non-monotonic and non-symmetric behaviors for heat capacity when Zeeman magnetic field is parallel and/or antiparallel to the host spins.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5046675</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5480-7569</orcidid><orcidid>https://orcid.org/0000-0002-5174-841X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2018-12, Vol.8 (12), p.125317-125317-12
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_1_5046675
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Born approximation
Coupling
Heisenberg theory
Impurities
Magnetic fields
Magnons
Nuclei (nuclear physics)
Specific heat
Statistical models
title Magnon-impurity interaction effect on the magnonic heat capacity of the Lieb lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnon-impurity%20interaction%20effect%20on%20the%20magnonic%20heat%20capacity%20of%20the%20Lieb%20lattice&rft.jtitle=AIP%20advances&rft.au=Le,%20P.%20T.%20T.&rft.date=2018-12&rft.volume=8&rft.issue=12&rft.spage=125317&rft.epage=125317-12&rft.pages=125317-125317-12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5046675&rft_dat=%3Cproquest_cross%3E2153808028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153808028&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_2b69de455e574b0f9a599ada95a033a6&rfr_iscdi=true