Size-tunable capture of mesoscopic matters using thermocapillary vortex

The hydrodynamics in lab-on-a-chip provides an efficient and tunable platform for manipulating mesoscopic particles. Current capture-tunable technology has been mainly focused on inertial flow with little attention on a thermocapillary vortex. The boundary condition is one of the most important fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-09, Vol.113 (13)
Hauptverfasser: Yang, Jianxin, Li, Zongbao, Wang, Haiyan, Weng, Zhe, Li, Yuqi, Cai, Xiang, Hu, Xiaowen, Jiang, Xiaofang, Chen, Yilin, Liu, Shaojing, Xue, Sheng, Yan, Zhibin, He, Sailing, Xing, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Applied physics letters
container_volume 113
creator Yang, Jianxin
Li, Zongbao
Wang, Haiyan
Weng, Zhe
Li, Yuqi
Cai, Xiang
Hu, Xiaowen
Jiang, Xiaofang
Chen, Yilin
Liu, Shaojing
Xue, Sheng
Yan, Zhibin
He, Sailing
Xing, Xiaobo
description The hydrodynamics in lab-on-a-chip provides an efficient and tunable platform for manipulating mesoscopic particles. Current capture-tunable technology has been mainly focused on inertial flow with little attention on a thermocapillary vortex. The boundary condition is one of the most important factors on particle manipulation in a microvortex. By integrating a photothermal waveguide with a triangular channel in lab-on-a-chip, we present a tunable microvortex array for achieving size-tunable capture. Ellipticity of the temperature field and intensity of vortices are continuously adjustable by moving the photothermal waveguide along the triangular channel, resulting in tunable particle trajectories. Particles can be trapped in a vortex center and driven out of the vortex along with external flow. The detailed theoretical results reveal that a threshold size of trapped particles can be adjustable by the channel width. We believe that the approach, the thermocapillary vortex on chip, will provide a facile way for seamless connection between photonics and microfluidics.
doi_str_mv 10.1063/1.5037862
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5037862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114657737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-615e3c7f8c8e21ec276bf4322465c01bad0f6d3d2cae093d3f7707a05ee0cf4c3</originalsourceid><addsrcrecordid>eNqd0MFKAzEQBuAgCtbqwTcIeFLYmmS6yfYoRatQ8KCeQ5qd6JbdzZpkRX16Iy149zQMfPwz_IScczbjTMI1n5UMVCXFAZlwplQBnFeHZMIYg0IuSn5MTmLc5rUUABOyemq-sUhjbzYtUmuGNAak3tEOo4_WD42lnUkJQ6RjbPpXmt4wdD7Lpm1N-KIfPiT8PCVHzrQRz_ZzSl7ubp-X98X6cfWwvFkXFoRKheQlglWushUKjlYouXFzEGIuS8v4xtTMyRpqYQ2yBdTglGLKsBKRWTe3MCUXu9wh-PcRY9JbP4Y-n9SC85yiFKisLnfKBh9jQKeH0HT5W82Z_u1Jc73vKdurnY22SSY1vv8fzj38QT3UDn4AzMB3Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114657737</pqid></control><display><type>article</type><title>Size-tunable capture of mesoscopic matters using thermocapillary vortex</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yang, Jianxin ; Li, Zongbao ; Wang, Haiyan ; Weng, Zhe ; Li, Yuqi ; Cai, Xiang ; Hu, Xiaowen ; Jiang, Xiaofang ; Chen, Yilin ; Liu, Shaojing ; Xue, Sheng ; Yan, Zhibin ; He, Sailing ; Xing, Xiaobo</creator><creatorcontrib>Yang, Jianxin ; Li, Zongbao ; Wang, Haiyan ; Weng, Zhe ; Li, Yuqi ; Cai, Xiang ; Hu, Xiaowen ; Jiang, Xiaofang ; Chen, Yilin ; Liu, Shaojing ; Xue, Sheng ; Yan, Zhibin ; He, Sailing ; Xing, Xiaobo</creatorcontrib><description>The hydrodynamics in lab-on-a-chip provides an efficient and tunable platform for manipulating mesoscopic particles. Current capture-tunable technology has been mainly focused on inertial flow with little attention on a thermocapillary vortex. The boundary condition is one of the most important factors on particle manipulation in a microvortex. By integrating a photothermal waveguide with a triangular channel in lab-on-a-chip, we present a tunable microvortex array for achieving size-tunable capture. Ellipticity of the temperature field and intensity of vortices are continuously adjustable by moving the photothermal waveguide along the triangular channel, resulting in tunable particle trajectories. Particles can be trapped in a vortex center and driven out of the vortex along with external flow. The detailed theoretical results reveal that a threshold size of trapped particles can be adjustable by the channel width. We believe that the approach, the thermocapillary vortex on chip, will provide a facile way for seamless connection between photonics and microfluidics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5037862</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boundary conditions ; Ellipticity ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Microfluidics ; Particle trajectories ; Photonics ; Temperature distribution ; Trapped particles ; Vortices</subject><ispartof>Applied physics letters, 2018-09, Vol.113 (13)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-615e3c7f8c8e21ec276bf4322465c01bad0f6d3d2cae093d3f7707a05ee0cf4c3</citedby><cites>FETCH-LOGICAL-c327t-615e3c7f8c8e21ec276bf4322465c01bad0f6d3d2cae093d3f7707a05ee0cf4c3</cites><orcidid>0000-0002-8720-8175 ; 0000-0002-3148-4277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5037862$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Yang, Jianxin</creatorcontrib><creatorcontrib>Li, Zongbao</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Weng, Zhe</creatorcontrib><creatorcontrib>Li, Yuqi</creatorcontrib><creatorcontrib>Cai, Xiang</creatorcontrib><creatorcontrib>Hu, Xiaowen</creatorcontrib><creatorcontrib>Jiang, Xiaofang</creatorcontrib><creatorcontrib>Chen, Yilin</creatorcontrib><creatorcontrib>Liu, Shaojing</creatorcontrib><creatorcontrib>Xue, Sheng</creatorcontrib><creatorcontrib>Yan, Zhibin</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><creatorcontrib>Xing, Xiaobo</creatorcontrib><title>Size-tunable capture of mesoscopic matters using thermocapillary vortex</title><title>Applied physics letters</title><description>The hydrodynamics in lab-on-a-chip provides an efficient and tunable platform for manipulating mesoscopic particles. Current capture-tunable technology has been mainly focused on inertial flow with little attention on a thermocapillary vortex. The boundary condition is one of the most important factors on particle manipulation in a microvortex. By integrating a photothermal waveguide with a triangular channel in lab-on-a-chip, we present a tunable microvortex array for achieving size-tunable capture. Ellipticity of the temperature field and intensity of vortices are continuously adjustable by moving the photothermal waveguide along the triangular channel, resulting in tunable particle trajectories. Particles can be trapped in a vortex center and driven out of the vortex along with external flow. The detailed theoretical results reveal that a threshold size of trapped particles can be adjustable by the channel width. We believe that the approach, the thermocapillary vortex on chip, will provide a facile way for seamless connection between photonics and microfluidics.</description><subject>Applied physics</subject><subject>Boundary conditions</subject><subject>Ellipticity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Microfluidics</subject><subject>Particle trajectories</subject><subject>Photonics</subject><subject>Temperature distribution</subject><subject>Trapped particles</subject><subject>Vortices</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqd0MFKAzEQBuAgCtbqwTcIeFLYmmS6yfYoRatQ8KCeQ5qd6JbdzZpkRX16Iy149zQMfPwz_IScczbjTMI1n5UMVCXFAZlwplQBnFeHZMIYg0IuSn5MTmLc5rUUABOyemq-sUhjbzYtUmuGNAak3tEOo4_WD42lnUkJQ6RjbPpXmt4wdD7Lpm1N-KIfPiT8PCVHzrQRz_ZzSl7ubp-X98X6cfWwvFkXFoRKheQlglWushUKjlYouXFzEGIuS8v4xtTMyRpqYQ2yBdTglGLKsBKRWTe3MCUXu9wh-PcRY9JbP4Y-n9SC85yiFKisLnfKBh9jQKeH0HT5W82Z_u1Jc73vKdurnY22SSY1vv8fzj38QT3UDn4AzMB3Dw</recordid><startdate>20180924</startdate><enddate>20180924</enddate><creator>Yang, Jianxin</creator><creator>Li, Zongbao</creator><creator>Wang, Haiyan</creator><creator>Weng, Zhe</creator><creator>Li, Yuqi</creator><creator>Cai, Xiang</creator><creator>Hu, Xiaowen</creator><creator>Jiang, Xiaofang</creator><creator>Chen, Yilin</creator><creator>Liu, Shaojing</creator><creator>Xue, Sheng</creator><creator>Yan, Zhibin</creator><creator>He, Sailing</creator><creator>Xing, Xiaobo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8720-8175</orcidid><orcidid>https://orcid.org/0000-0002-3148-4277</orcidid></search><sort><creationdate>20180924</creationdate><title>Size-tunable capture of mesoscopic matters using thermocapillary vortex</title><author>Yang, Jianxin ; Li, Zongbao ; Wang, Haiyan ; Weng, Zhe ; Li, Yuqi ; Cai, Xiang ; Hu, Xiaowen ; Jiang, Xiaofang ; Chen, Yilin ; Liu, Shaojing ; Xue, Sheng ; Yan, Zhibin ; He, Sailing ; Xing, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-615e3c7f8c8e21ec276bf4322465c01bad0f6d3d2cae093d3f7707a05ee0cf4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Boundary conditions</topic><topic>Ellipticity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Microfluidics</topic><topic>Particle trajectories</topic><topic>Photonics</topic><topic>Temperature distribution</topic><topic>Trapped particles</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianxin</creatorcontrib><creatorcontrib>Li, Zongbao</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Weng, Zhe</creatorcontrib><creatorcontrib>Li, Yuqi</creatorcontrib><creatorcontrib>Cai, Xiang</creatorcontrib><creatorcontrib>Hu, Xiaowen</creatorcontrib><creatorcontrib>Jiang, Xiaofang</creatorcontrib><creatorcontrib>Chen, Yilin</creatorcontrib><creatorcontrib>Liu, Shaojing</creatorcontrib><creatorcontrib>Xue, Sheng</creatorcontrib><creatorcontrib>Yan, Zhibin</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><creatorcontrib>Xing, Xiaobo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianxin</au><au>Li, Zongbao</au><au>Wang, Haiyan</au><au>Weng, Zhe</au><au>Li, Yuqi</au><au>Cai, Xiang</au><au>Hu, Xiaowen</au><au>Jiang, Xiaofang</au><au>Chen, Yilin</au><au>Liu, Shaojing</au><au>Xue, Sheng</au><au>Yan, Zhibin</au><au>He, Sailing</au><au>Xing, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size-tunable capture of mesoscopic matters using thermocapillary vortex</atitle><jtitle>Applied physics letters</jtitle><date>2018-09-24</date><risdate>2018</risdate><volume>113</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The hydrodynamics in lab-on-a-chip provides an efficient and tunable platform for manipulating mesoscopic particles. Current capture-tunable technology has been mainly focused on inertial flow with little attention on a thermocapillary vortex. The boundary condition is one of the most important factors on particle manipulation in a microvortex. By integrating a photothermal waveguide with a triangular channel in lab-on-a-chip, we present a tunable microvortex array for achieving size-tunable capture. Ellipticity of the temperature field and intensity of vortices are continuously adjustable by moving the photothermal waveguide along the triangular channel, resulting in tunable particle trajectories. Particles can be trapped in a vortex center and driven out of the vortex along with external flow. The detailed theoretical results reveal that a threshold size of trapped particles can be adjustable by the channel width. We believe that the approach, the thermocapillary vortex on chip, will provide a facile way for seamless connection between photonics and microfluidics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5037862</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8720-8175</orcidid><orcidid>https://orcid.org/0000-0002-3148-4277</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-09, Vol.113 (13)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_5037862
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Boundary conditions
Ellipticity
Fluid dynamics
Fluid flow
Hydrodynamics
Microfluidics
Particle trajectories
Photonics
Temperature distribution
Trapped particles
Vortices
title Size-tunable capture of mesoscopic matters using thermocapillary vortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size-tunable%20capture%20of%20mesoscopic%20matters%20using%20thermocapillary%20vortex&rft.jtitle=Applied%20physics%20letters&rft.au=Yang,%20Jianxin&rft.date=2018-09-24&rft.volume=113&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5037862&rft_dat=%3Cproquest_cross%3E2114657737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114657737&rft_id=info:pmid/&rfr_iscdi=true