Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications
Herein, we report the fabrication as well as application of a multiwall carbon nanotube-reduced graphene oxide polyester band (MWNT-rGO@PEB) piezoresistive strain sensor for human-machine interface applications. The addition of unzipped functionalized MWNTs in the rGO ink assists in providing the pr...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-08, Vol.113 (8) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 113 |
creator | Tewari, Amit Gandla, Srinivas Bohm, Siva McNeill, Christopher R. Gupta, Dipti |
description | Herein, we report the fabrication as well as application of a multiwall carbon nanotube-reduced graphene oxide polyester band (MWNT-rGO@PEB) piezoresistive strain sensor for human-machine interface applications. The addition of unzipped functionalized MWNTs in the rGO ink assists in providing the propagation path for the charge carriers. The sensing mechanism involved for this strain sensor comprises two regimes, one with a gauge factor of 150 (0%–25%) and the other one with 650 (28%–40%) with the change in the resistivity at a low strain value since the fibres entangled together and wrapped with conductive rGO flakes get separated very slightly apart. At higher strain values, the flakes wrapped on the fibre backbones separated far apart, resulting in a disconnected percolation path for the charges. This kind of sensing mechanism has enough potential to detect small scale as well as large scale motions with excellent reproducibility over 2000 cycles. Some heath monitoring applications such as forearm motion, cheek bulging, and finger bending have been demonstrated in real time by using this piezoresistive strain sensor. The significant advantages of these sensors are their low cost, easy fabrication (one step), and versatility, which render them favourable for health-monitoring applications. |
doi_str_mv | 10.1063/1.5037318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5037318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090062024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-67045ba852a2c5dd1c20cb175bbc2eb0fc90afb7474f701479ead25041fe12513</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWKsHv0HAixW2TpLNpnvUUqtQrUjF45LNH0jd7sZkW6mf3tUWvHsahvfjzbyH0DmBIYGMXZMhByYYGR2gHgEhEkbI6BD1AIAlWc7JMTqJcdmtnDLWQ6sX6Z3G2vlEhy1-fHtaJGE6x65-x59Bem809k21NbE1AZtKxtYpXMpa48vnye0A2yZg78xXE0x0nbgxOLZBuhpHU8dO7Dwqp2TrmjqeoiMrq2jO9rOPXu8mi_F9MptPH8Y3s0SxjLZJJiDlpRxxKqniWhNFQZVE8LJU1JRgVQ7SliIVqRVAUpEbqSmHlFhDKCesjy52vj40H-vu92LZrEPdnSwo5AAZBZp21GBHqdDEGIwtfHArGbYFgeKnzYIU-zY79mrHRuXa3zD_gzdN-AMLry37BvLEgvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090062024</pqid></control><display><type>article</type><title>Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Tewari, Amit ; Gandla, Srinivas ; Bohm, Siva ; McNeill, Christopher R. ; Gupta, Dipti</creator><creatorcontrib>Tewari, Amit ; Gandla, Srinivas ; Bohm, Siva ; McNeill, Christopher R. ; Gupta, Dipti</creatorcontrib><description>Herein, we report the fabrication as well as application of a multiwall carbon nanotube-reduced graphene oxide polyester band (MWNT-rGO@PEB) piezoresistive strain sensor for human-machine interface applications. The addition of unzipped functionalized MWNTs in the rGO ink assists in providing the propagation path for the charge carriers. The sensing mechanism involved for this strain sensor comprises two regimes, one with a gauge factor of 150 (0%–25%) and the other one with 650 (28%–40%) with the change in the resistivity at a low strain value since the fibres entangled together and wrapped with conductive rGO flakes get separated very slightly apart. At higher strain values, the flakes wrapped on the fibre backbones separated far apart, resulting in a disconnected percolation path for the charges. This kind of sensing mechanism has enough potential to detect small scale as well as large scale motions with excellent reproducibility over 2000 cycles. Some heath monitoring applications such as forearm motion, cheek bulging, and finger bending have been demonstrated in real time by using this piezoresistive strain sensor. The significant advantages of these sensors are their low cost, easy fabrication (one step), and versatility, which render them favourable for health-monitoring applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5037318</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Current carriers ; Flakes ; Forearm ; Man-machine interfaces ; Multi wall carbon nanotubes ; Percolation ; Polyesters ; Reproducibility ; Sensors</subject><ispartof>Applied physics letters, 2018-08, Vol.113 (8)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-67045ba852a2c5dd1c20cb175bbc2eb0fc90afb7474f701479ead25041fe12513</citedby><cites>FETCH-LOGICAL-c362t-67045ba852a2c5dd1c20cb175bbc2eb0fc90afb7474f701479ead25041fe12513</cites><orcidid>0000-0001-5221-878X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5037318$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Tewari, Amit</creatorcontrib><creatorcontrib>Gandla, Srinivas</creatorcontrib><creatorcontrib>Bohm, Siva</creatorcontrib><creatorcontrib>McNeill, Christopher R.</creatorcontrib><creatorcontrib>Gupta, Dipti</creatorcontrib><title>Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications</title><title>Applied physics letters</title><description>Herein, we report the fabrication as well as application of a multiwall carbon nanotube-reduced graphene oxide polyester band (MWNT-rGO@PEB) piezoresistive strain sensor for human-machine interface applications. The addition of unzipped functionalized MWNTs in the rGO ink assists in providing the propagation path for the charge carriers. The sensing mechanism involved for this strain sensor comprises two regimes, one with a gauge factor of 150 (0%–25%) and the other one with 650 (28%–40%) with the change in the resistivity at a low strain value since the fibres entangled together and wrapped with conductive rGO flakes get separated very slightly apart. At higher strain values, the flakes wrapped on the fibre backbones separated far apart, resulting in a disconnected percolation path for the charges. This kind of sensing mechanism has enough potential to detect small scale as well as large scale motions with excellent reproducibility over 2000 cycles. Some heath monitoring applications such as forearm motion, cheek bulging, and finger bending have been demonstrated in real time by using this piezoresistive strain sensor. The significant advantages of these sensors are their low cost, easy fabrication (one step), and versatility, which render them favourable for health-monitoring applications.</description><subject>Applied physics</subject><subject>Current carriers</subject><subject>Flakes</subject><subject>Forearm</subject><subject>Man-machine interfaces</subject><subject>Multi wall carbon nanotubes</subject><subject>Percolation</subject><subject>Polyesters</subject><subject>Reproducibility</subject><subject>Sensors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEQxYMoWKsHv0HAixW2TpLNpnvUUqtQrUjF45LNH0jd7sZkW6mf3tUWvHsahvfjzbyH0DmBIYGMXZMhByYYGR2gHgEhEkbI6BD1AIAlWc7JMTqJcdmtnDLWQ6sX6Z3G2vlEhy1-fHtaJGE6x65-x59Bem809k21NbE1AZtKxtYpXMpa48vnye0A2yZg78xXE0x0nbgxOLZBuhpHU8dO7Dwqp2TrmjqeoiMrq2jO9rOPXu8mi_F9MptPH8Y3s0SxjLZJJiDlpRxxKqniWhNFQZVE8LJU1JRgVQ7SliIVqRVAUpEbqSmHlFhDKCesjy52vj40H-vu92LZrEPdnSwo5AAZBZp21GBHqdDEGIwtfHArGbYFgeKnzYIU-zY79mrHRuXa3zD_gzdN-AMLry37BvLEgvA</recordid><startdate>20180820</startdate><enddate>20180820</enddate><creator>Tewari, Amit</creator><creator>Gandla, Srinivas</creator><creator>Bohm, Siva</creator><creator>McNeill, Christopher R.</creator><creator>Gupta, Dipti</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5221-878X</orcidid></search><sort><creationdate>20180820</creationdate><title>Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications</title><author>Tewari, Amit ; Gandla, Srinivas ; Bohm, Siva ; McNeill, Christopher R. ; Gupta, Dipti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-67045ba852a2c5dd1c20cb175bbc2eb0fc90afb7474f701479ead25041fe12513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Current carriers</topic><topic>Flakes</topic><topic>Forearm</topic><topic>Man-machine interfaces</topic><topic>Multi wall carbon nanotubes</topic><topic>Percolation</topic><topic>Polyesters</topic><topic>Reproducibility</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tewari, Amit</creatorcontrib><creatorcontrib>Gandla, Srinivas</creatorcontrib><creatorcontrib>Bohm, Siva</creatorcontrib><creatorcontrib>McNeill, Christopher R.</creatorcontrib><creatorcontrib>Gupta, Dipti</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tewari, Amit</au><au>Gandla, Srinivas</au><au>Bohm, Siva</au><au>McNeill, Christopher R.</au><au>Gupta, Dipti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications</atitle><jtitle>Applied physics letters</jtitle><date>2018-08-20</date><risdate>2018</risdate><volume>113</volume><issue>8</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Herein, we report the fabrication as well as application of a multiwall carbon nanotube-reduced graphene oxide polyester band (MWNT-rGO@PEB) piezoresistive strain sensor for human-machine interface applications. The addition of unzipped functionalized MWNTs in the rGO ink assists in providing the propagation path for the charge carriers. The sensing mechanism involved for this strain sensor comprises two regimes, one with a gauge factor of 150 (0%–25%) and the other one with 650 (28%–40%) with the change in the resistivity at a low strain value since the fibres entangled together and wrapped with conductive rGO flakes get separated very slightly apart. At higher strain values, the flakes wrapped on the fibre backbones separated far apart, resulting in a disconnected percolation path for the charges. This kind of sensing mechanism has enough potential to detect small scale as well as large scale motions with excellent reproducibility over 2000 cycles. Some heath monitoring applications such as forearm motion, cheek bulging, and finger bending have been demonstrated in real time by using this piezoresistive strain sensor. The significant advantages of these sensors are their low cost, easy fabrication (one step), and versatility, which render them favourable for health-monitoring applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5037318</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5221-878X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-08, Vol.113 (8) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5037318 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Current carriers Flakes Forearm Man-machine interfaces Multi wall carbon nanotubes Percolation Polyesters Reproducibility Sensors |
title | Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20dip-dry%20MWNT-rGO%20ink%20wrapped%20polyester%20elastic%20band%20(PEB)%20for%20piezoresistive%20strain%20sensor%20applications&rft.jtitle=Applied%20physics%20letters&rft.au=Tewari,%20Amit&rft.date=2018-08-20&rft.volume=113&rft.issue=8&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5037318&rft_dat=%3Cproquest_cross%3E2090062024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090062024&rft_id=info:pmid/&rfr_iscdi=true |