Sensing and cooling of a nanomechanical resonator with an electron beam stimulated internal feedback and a capacitive force
A model for the cooling properties of a nanocantilever by a free electron beam is presented for a capacitive interaction. The optimal parameters for position sensing and cooling applications are estimated from previous experimental conditions. In particular, we demonstrate that a purely capacitive f...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2018-08, Vol.124 (6) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 124 |
creator | Descombin, A. Perisanu, S. Poncharal, P. Vincent, P. Purcell, S. T. Ayari, A. |
description | A model for the cooling properties of a nanocantilever by a free electron beam is presented for a capacitive interaction. The optimal parameters for position sensing and cooling applications are estimated from previous experimental conditions. In particular, we demonstrate that a purely capacitive force and an electron beam stimulated internal feedback can lower the temperature of a nanocantilever by several orders of magnitude, in striking contrast with the conventional electrostatic damping regime. We propose a step by step protocol to extract the interdependent parameters of the experiments. This work will aid future developments of ultra-sensitive force sensors in electron microscopes. |
doi_str_mv | 10.1063/1.5036613 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5036613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01858380v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-afdfe4fb0f5fa711d4191815adf36cb0972a220e34bad3bea2f1c114537556a53</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0GuClszm_2TPZaiVih4UM_LbDax0d2kJLEifnm3trQHwdMMw-893jxCLoFNgBX8BiY540UB_IiMgIkqKfOcHZMRYykkoiqrU3IWwhtjAIJXI_L9pGww9pWibal0rtvsTlOkFq3rlVyiNRI76lVwFqPz9NPE5YBT1SkZvbO0UdjTEE3_0WFULTU2Km8HjVaqbVC-_5ojlbhCaaJZK6qdl-qcnGjsgrrYzTF5ubt9ns2TxeP9w2y6SCRPRUxQt1plumE611gCtBlUICDHVvNCNqwqU0xTpnjWYMuHMKkGCZDlfPi9wJyPydXWd4ldvfKmR_9VOzT1fLqoNzcGIhdcsDUcWOldCF7pvQBYvWm4hnrX8MBeb9kwfIXROLuH184fwHo1JP0H_uv8A7f5iz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sensing and cooling of a nanomechanical resonator with an electron beam stimulated internal feedback and a capacitive force</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Descombin, A. ; Perisanu, S. ; Poncharal, P. ; Vincent, P. ; Purcell, S. T. ; Ayari, A.</creator><creatorcontrib>Descombin, A. ; Perisanu, S. ; Poncharal, P. ; Vincent, P. ; Purcell, S. T. ; Ayari, A.</creatorcontrib><description>A model for the cooling properties of a nanocantilever by a free electron beam is presented for a capacitive interaction. The optimal parameters for position sensing and cooling applications are estimated from previous experimental conditions. In particular, we demonstrate that a purely capacitive force and an electron beam stimulated internal feedback can lower the temperature of a nanocantilever by several orders of magnitude, in striking contrast with the conventional electrostatic damping regime. We propose a step by step protocol to extract the interdependent parameters of the experiments. This work will aid future developments of ultra-sensitive force sensors in electron microscopes.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5036613</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Condensed Matter ; Mesoscopic Systems and Quantum Hall Effect ; Physics</subject><ispartof>Journal of applied physics, 2018-08, Vol.124 (6)</ispartof><rights>Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-afdfe4fb0f5fa711d4191815adf36cb0972a220e34bad3bea2f1c114537556a53</cites><orcidid>0000-0003-1654-5470 ; 0000-0001-5405-9575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5036613$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01858380$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Descombin, A.</creatorcontrib><creatorcontrib>Perisanu, S.</creatorcontrib><creatorcontrib>Poncharal, P.</creatorcontrib><creatorcontrib>Vincent, P.</creatorcontrib><creatorcontrib>Purcell, S. T.</creatorcontrib><creatorcontrib>Ayari, A.</creatorcontrib><title>Sensing and cooling of a nanomechanical resonator with an electron beam stimulated internal feedback and a capacitive force</title><title>Journal of applied physics</title><description>A model for the cooling properties of a nanocantilever by a free electron beam is presented for a capacitive interaction. The optimal parameters for position sensing and cooling applications are estimated from previous experimental conditions. In particular, we demonstrate that a purely capacitive force and an electron beam stimulated internal feedback can lower the temperature of a nanocantilever by several orders of magnitude, in striking contrast with the conventional electrostatic damping regime. We propose a step by step protocol to extract the interdependent parameters of the experiments. This work will aid future developments of ultra-sensitive force sensors in electron microscopes.</description><subject>Condensed Matter</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Physics</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0GuClszm_2TPZaiVih4UM_LbDax0d2kJLEifnm3trQHwdMMw-893jxCLoFNgBX8BiY540UB_IiMgIkqKfOcHZMRYykkoiqrU3IWwhtjAIJXI_L9pGww9pWibal0rtvsTlOkFq3rlVyiNRI76lVwFqPz9NPE5YBT1SkZvbO0UdjTEE3_0WFULTU2Km8HjVaqbVC-_5ojlbhCaaJZK6qdl-qcnGjsgrrYzTF5ubt9ns2TxeP9w2y6SCRPRUxQt1plumE611gCtBlUICDHVvNCNqwqU0xTpnjWYMuHMKkGCZDlfPi9wJyPydXWd4ldvfKmR_9VOzT1fLqoNzcGIhdcsDUcWOldCF7pvQBYvWm4hnrX8MBeb9kwfIXROLuH184fwHo1JP0H_uv8A7f5iz8</recordid><startdate>20180814</startdate><enddate>20180814</enddate><creator>Descombin, A.</creator><creator>Perisanu, S.</creator><creator>Poncharal, P.</creator><creator>Vincent, P.</creator><creator>Purcell, S. T.</creator><creator>Ayari, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1654-5470</orcidid><orcidid>https://orcid.org/0000-0001-5405-9575</orcidid></search><sort><creationdate>20180814</creationdate><title>Sensing and cooling of a nanomechanical resonator with an electron beam stimulated internal feedback and a capacitive force</title><author>Descombin, A. ; Perisanu, S. ; Poncharal, P. ; Vincent, P. ; Purcell, S. T. ; Ayari, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-afdfe4fb0f5fa711d4191815adf36cb0972a220e34bad3bea2f1c114537556a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Condensed Matter</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Descombin, A.</creatorcontrib><creatorcontrib>Perisanu, S.</creatorcontrib><creatorcontrib>Poncharal, P.</creatorcontrib><creatorcontrib>Vincent, P.</creatorcontrib><creatorcontrib>Purcell, S. T.</creatorcontrib><creatorcontrib>Ayari, A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Descombin, A.</au><au>Perisanu, S.</au><au>Poncharal, P.</au><au>Vincent, P.</au><au>Purcell, S. T.</au><au>Ayari, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensing and cooling of a nanomechanical resonator with an electron beam stimulated internal feedback and a capacitive force</atitle><jtitle>Journal of applied physics</jtitle><date>2018-08-14</date><risdate>2018</risdate><volume>124</volume><issue>6</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A model for the cooling properties of a nanocantilever by a free electron beam is presented for a capacitive interaction. The optimal parameters for position sensing and cooling applications are estimated from previous experimental conditions. In particular, we demonstrate that a purely capacitive force and an electron beam stimulated internal feedback can lower the temperature of a nanocantilever by several orders of magnitude, in striking contrast with the conventional electrostatic damping regime. We propose a step by step protocol to extract the interdependent parameters of the experiments. This work will aid future developments of ultra-sensitive force sensors in electron microscopes.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.5036613</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1654-5470</orcidid><orcidid>https://orcid.org/0000-0001-5405-9575</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2018-08, Vol.124 (6) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5036613 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Condensed Matter Mesoscopic Systems and Quantum Hall Effect Physics |
title | Sensing and cooling of a nanomechanical resonator with an electron beam stimulated internal feedback and a capacitive force |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensing%20and%20cooling%20of%20a%20nanomechanical%20resonator%20with%20an%20electron%20beam%20stimulated%20internal%20feedback%20and%20a%20capacitive%20force&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Descombin,%20A.&rft.date=2018-08-14&rft.volume=124&rft.issue=6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5036613&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01858380v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |