Visible spectroscopy diagnostics for tungsten source assessment in the WEST tokamak: First measurements

The present work concerns the measurements obtained with the Tungsten (W) Environment in Steady-state Tokamak (WEST) visible spectroscopy system during the first experimental campaign. This system has been developed in the framework of the WEST project that equipped the existing Tore Supra device wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of Scientific Instruments 2018-10, Vol.89 (10), p.10D105-10D105
Hauptverfasser: Meyer, O., Giacalone, J. C., Gouin, A., Pascal, J. Y., Klepper, C. C., Fedorczak, N., Lotte, Ph, Unterberg, E. A., Fehling, D. T., Harris, J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10D105
container_issue 10
container_start_page 10D105
container_title Review of Scientific Instruments
container_volume 89
creator Meyer, O.
Giacalone, J. C.
Gouin, A.
Pascal, J. Y.
Klepper, C. C.
Fedorczak, N.
Lotte, Ph
Unterberg, E. A.
Fehling, D. T.
Harris, J. H.
description The present work concerns the measurements obtained with the Tungsten (W) Environment in Steady-state Tokamak (WEST) visible spectroscopy system during the first experimental campaign. This system has been developed in the framework of the WEST project that equipped the existing Tore Supra device with a tungsten divertor in order to test actively cooled tungsten Plasma Facing Components (PFC) in view of preparing for ITER operation. The goal of this diagnostic is to measure the PFC sources and the deuterium recycling with spectral, spatial, and temporal resolution adapted to the predicted power deposition profiles on the objects observed. Three kinds of PFCs are monitored: the Ion Cyclotron Resonance Heating (ICRH) antenna and Low Hybrid Current Drive (LHCD) launcher W limiters; one of the 6 W inner bumpers; and the upper and lower W divertors. Large-aperture in-vessel actively cooled optical systems (f-number ∼ 3) were installed for each view and connected to optical fibres. A total of 240 optical fibers can be distributed on various detection systems including a fast response-time, multi-channel, filtered photodetector-based “Filterscope” system, developed by Oak Ridge National Laboratory (USA) as well as grating spectrometers optimized for multi-sightline analysis. The first WEST experimental campaign conducted in 2017 has been dedicated to plasma start-up development during which the visible spectroscopy system has provided crucial information related to the impurity content first and then impurity sources. The diagnostic setup for that first experimental campaign was limited to the inner bumper and outer limiters but was sufficient to demonstrate that the optical setup was in accordance with the specifications. The radiance calibration procedure allowed us to estimate fluxes from the main limiter of about 8 × 1018 atoms/(s m2) and to show a first W source radial profile along the outboard limiter.
doi_str_mv 10.1063/1.5035566
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5035566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130800893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-af02111861ce0d25239ccf7abc7cd3d01847699887e6810952593877dd1f45503</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhwBdAFr0AUoonjv-EW1W1tNJKHChwtLyOs-s2sZeMU6nfHq92KRKHzmUuP72Z9x4hb4GdApP8M5wKxoWQ8hlZANNtpWTNn5MFY7yppGr0EXmFeMvKCICX5Igz3rZS1Quy_hkwrAZPcetdnhK6tH2gXbDrmDAHh7RPE81zXGP2kWKaJ-epRfSIo4-ZhkjzxtNfF99vaE53drR3X-hlmDDT0VucJ7_D8DV50dsB_ZvDPiY_Li9uzq-q5bev1-dny8o1TZMr27MaALQE51lXi5q3zvXKrpxyHe8Y6EbJttVaeamBtaIWLddKdR30jSgpHJP3e93d9wZdyN5tXIqxuDMgQEihCvRxD23sYLZTGO30YJIN5upsaZy3ptxRTd2Ieyjshz27ndLv2WM2Y0Dnh8FGn2Y0NXCmWQmdF_TkP_S2xBWLXVMzrYTgCti_466kjZPvHz8AZnZ1GjCHOgv77qA4r0bfPZJ_-yvApz2wc2pzSPEJtT9dVqTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087553710</pqid></control><display><type>article</type><title>Visible spectroscopy diagnostics for tungsten source assessment in the WEST tokamak: First measurements</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Meyer, O. ; Giacalone, J. C. ; Gouin, A. ; Pascal, J. Y. ; Klepper, C. C. ; Fedorczak, N. ; Lotte, Ph ; Unterberg, E. A. ; Fehling, D. T. ; Harris, J. H.</creator><creatorcontrib>Meyer, O. ; Giacalone, J. C. ; Gouin, A. ; Pascal, J. Y. ; Klepper, C. C. ; Fedorczak, N. ; Lotte, Ph ; Unterberg, E. A. ; Fehling, D. T. ; Harris, J. H. ; WEST Team ; WEST Team ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The present work concerns the measurements obtained with the Tungsten (W) Environment in Steady-state Tokamak (WEST) visible spectroscopy system during the first experimental campaign. This system has been developed in the framework of the WEST project that equipped the existing Tore Supra device with a tungsten divertor in order to test actively cooled tungsten Plasma Facing Components (PFC) in view of preparing for ITER operation. The goal of this diagnostic is to measure the PFC sources and the deuterium recycling with spectral, spatial, and temporal resolution adapted to the predicted power deposition profiles on the objects observed. Three kinds of PFCs are monitored: the Ion Cyclotron Resonance Heating (ICRH) antenna and Low Hybrid Current Drive (LHCD) launcher W limiters; one of the 6 W inner bumpers; and the upper and lower W divertors. Large-aperture in-vessel actively cooled optical systems (f-number ∼ 3) were installed for each view and connected to optical fibres. A total of 240 optical fibers can be distributed on various detection systems including a fast response-time, multi-channel, filtered photodetector-based “Filterscope” system, developed by Oak Ridge National Laboratory (USA) as well as grating spectrometers optimized for multi-sightline analysis. The first WEST experimental campaign conducted in 2017 has been dedicated to plasma start-up development during which the visible spectroscopy system has provided crucial information related to the impurity content first and then impurity sources. The diagnostic setup for that first experimental campaign was limited to the inner bumper and outer limiters but was sufficient to demonstrate that the optical setup was in accordance with the specifications. The radiance calibration procedure allowed us to estimate fluxes from the main limiter of about 8 × 1018 atoms/(s m2) and to show a first W source radial profile along the outboard limiter.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5035566</identifier><identifier>PMID: 30399672</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bumpers ; Cyclotron resonance ; Deuterium ; Diagnostic systems ; Divertors (fusion reactors) ; Fluxes ; Impurities ; Optical fibers ; Physics ; Radiance ; Research facilities ; Scientific apparatus &amp; instruments ; Spectrometers ; Spectrum analysis ; Temporal resolution ; Tokamak devices ; Tungsten</subject><ispartof>Review of Scientific Instruments, 2018-10, Vol.89 (10), p.10D105-10D105</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-af02111861ce0d25239ccf7abc7cd3d01847699887e6810952593877dd1f45503</citedby><cites>FETCH-LOGICAL-c444t-af02111861ce0d25239ccf7abc7cd3d01847699887e6810952593877dd1f45503</cites><orcidid>0000-0003-1353-8865 ; 0000-0001-9107-8337 ; 0000000313538865 ; 0000000191078337 ; 0000000345123621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5035566$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,309,310,314,778,782,787,788,792,883,4500,23913,23914,25123,27907,27908,76135</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30399672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-01874245$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1515657$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyer, O.</creatorcontrib><creatorcontrib>Giacalone, J. C.</creatorcontrib><creatorcontrib>Gouin, A.</creatorcontrib><creatorcontrib>Pascal, J. Y.</creatorcontrib><creatorcontrib>Klepper, C. C.</creatorcontrib><creatorcontrib>Fedorczak, N.</creatorcontrib><creatorcontrib>Lotte, Ph</creatorcontrib><creatorcontrib>Unterberg, E. A.</creatorcontrib><creatorcontrib>Fehling, D. T.</creatorcontrib><creatorcontrib>Harris, J. H.</creatorcontrib><creatorcontrib>WEST Team</creatorcontrib><creatorcontrib>WEST Team</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Visible spectroscopy diagnostics for tungsten source assessment in the WEST tokamak: First measurements</title><title>Review of Scientific Instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The present work concerns the measurements obtained with the Tungsten (W) Environment in Steady-state Tokamak (WEST) visible spectroscopy system during the first experimental campaign. This system has been developed in the framework of the WEST project that equipped the existing Tore Supra device with a tungsten divertor in order to test actively cooled tungsten Plasma Facing Components (PFC) in view of preparing for ITER operation. The goal of this diagnostic is to measure the PFC sources and the deuterium recycling with spectral, spatial, and temporal resolution adapted to the predicted power deposition profiles on the objects observed. Three kinds of PFCs are monitored: the Ion Cyclotron Resonance Heating (ICRH) antenna and Low Hybrid Current Drive (LHCD) launcher W limiters; one of the 6 W inner bumpers; and the upper and lower W divertors. Large-aperture in-vessel actively cooled optical systems (f-number ∼ 3) were installed for each view and connected to optical fibres. A total of 240 optical fibers can be distributed on various detection systems including a fast response-time, multi-channel, filtered photodetector-based “Filterscope” system, developed by Oak Ridge National Laboratory (USA) as well as grating spectrometers optimized for multi-sightline analysis. The first WEST experimental campaign conducted in 2017 has been dedicated to plasma start-up development during which the visible spectroscopy system has provided crucial information related to the impurity content first and then impurity sources. The diagnostic setup for that first experimental campaign was limited to the inner bumper and outer limiters but was sufficient to demonstrate that the optical setup was in accordance with the specifications. The radiance calibration procedure allowed us to estimate fluxes from the main limiter of about 8 × 1018 atoms/(s m2) and to show a first W source radial profile along the outboard limiter.</description><subject>Bumpers</subject><subject>Cyclotron resonance</subject><subject>Deuterium</subject><subject>Diagnostic systems</subject><subject>Divertors (fusion reactors)</subject><subject>Fluxes</subject><subject>Impurities</subject><subject>Optical fibers</subject><subject>Physics</subject><subject>Radiance</subject><subject>Research facilities</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Spectrometers</subject><subject>Spectrum analysis</subject><subject>Temporal resolution</subject><subject>Tokamak devices</subject><subject>Tungsten</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EokvhwBdAFr0AUoonjv-EW1W1tNJKHChwtLyOs-s2sZeMU6nfHq92KRKHzmUuP72Z9x4hb4GdApP8M5wKxoWQ8hlZANNtpWTNn5MFY7yppGr0EXmFeMvKCICX5Igz3rZS1Quy_hkwrAZPcetdnhK6tH2gXbDrmDAHh7RPE81zXGP2kWKaJ-epRfSIo4-ZhkjzxtNfF99vaE53drR3X-hlmDDT0VucJ7_D8DV50dsB_ZvDPiY_Li9uzq-q5bev1-dny8o1TZMr27MaALQE51lXi5q3zvXKrpxyHe8Y6EbJttVaeamBtaIWLddKdR30jSgpHJP3e93d9wZdyN5tXIqxuDMgQEihCvRxD23sYLZTGO30YJIN5upsaZy3ptxRTd2Ieyjshz27ndLv2WM2Y0Dnh8FGn2Y0NXCmWQmdF_TkP_S2xBWLXVMzrYTgCti_466kjZPvHz8AZnZ1GjCHOgv77qA4r0bfPZJ_-yvApz2wc2pzSPEJtT9dVqTg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Meyer, O.</creator><creator>Giacalone, J. C.</creator><creator>Gouin, A.</creator><creator>Pascal, J. Y.</creator><creator>Klepper, C. C.</creator><creator>Fedorczak, N.</creator><creator>Lotte, Ph</creator><creator>Unterberg, E. A.</creator><creator>Fehling, D. T.</creator><creator>Harris, J. H.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1353-8865</orcidid><orcidid>https://orcid.org/0000-0001-9107-8337</orcidid><orcidid>https://orcid.org/0000000313538865</orcidid><orcidid>https://orcid.org/0000000191078337</orcidid><orcidid>https://orcid.org/0000000345123621</orcidid></search><sort><creationdate>20181001</creationdate><title>Visible spectroscopy diagnostics for tungsten source assessment in the WEST tokamak: First measurements</title><author>Meyer, O. ; Giacalone, J. C. ; Gouin, A. ; Pascal, J. Y. ; Klepper, C. C. ; Fedorczak, N. ; Lotte, Ph ; Unterberg, E. A. ; Fehling, D. T. ; Harris, J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-af02111861ce0d25239ccf7abc7cd3d01847699887e6810952593877dd1f45503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bumpers</topic><topic>Cyclotron resonance</topic><topic>Deuterium</topic><topic>Diagnostic systems</topic><topic>Divertors (fusion reactors)</topic><topic>Fluxes</topic><topic>Impurities</topic><topic>Optical fibers</topic><topic>Physics</topic><topic>Radiance</topic><topic>Research facilities</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Spectrometers</topic><topic>Spectrum analysis</topic><topic>Temporal resolution</topic><topic>Tokamak devices</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, O.</creatorcontrib><creatorcontrib>Giacalone, J. C.</creatorcontrib><creatorcontrib>Gouin, A.</creatorcontrib><creatorcontrib>Pascal, J. Y.</creatorcontrib><creatorcontrib>Klepper, C. C.</creatorcontrib><creatorcontrib>Fedorczak, N.</creatorcontrib><creatorcontrib>Lotte, Ph</creatorcontrib><creatorcontrib>Unterberg, E. A.</creatorcontrib><creatorcontrib>Fehling, D. T.</creatorcontrib><creatorcontrib>Harris, J. H.</creatorcontrib><creatorcontrib>WEST Team</creatorcontrib><creatorcontrib>WEST Team</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Review of Scientific Instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, O.</au><au>Giacalone, J. C.</au><au>Gouin, A.</au><au>Pascal, J. Y.</au><au>Klepper, C. C.</au><au>Fedorczak, N.</au><au>Lotte, Ph</au><au>Unterberg, E. A.</au><au>Fehling, D. T.</au><au>Harris, J. H.</au><aucorp>WEST Team</aucorp><aucorp>WEST Team</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible spectroscopy diagnostics for tungsten source assessment in the WEST tokamak: First measurements</atitle><jtitle>Review of Scientific Instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>89</volume><issue>10</issue><spage>10D105</spage><epage>10D105</epage><pages>10D105-10D105</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The present work concerns the measurements obtained with the Tungsten (W) Environment in Steady-state Tokamak (WEST) visible spectroscopy system during the first experimental campaign. This system has been developed in the framework of the WEST project that equipped the existing Tore Supra device with a tungsten divertor in order to test actively cooled tungsten Plasma Facing Components (PFC) in view of preparing for ITER operation. The goal of this diagnostic is to measure the PFC sources and the deuterium recycling with spectral, spatial, and temporal resolution adapted to the predicted power deposition profiles on the objects observed. Three kinds of PFCs are monitored: the Ion Cyclotron Resonance Heating (ICRH) antenna and Low Hybrid Current Drive (LHCD) launcher W limiters; one of the 6 W inner bumpers; and the upper and lower W divertors. Large-aperture in-vessel actively cooled optical systems (f-number ∼ 3) were installed for each view and connected to optical fibres. A total of 240 optical fibers can be distributed on various detection systems including a fast response-time, multi-channel, filtered photodetector-based “Filterscope” system, developed by Oak Ridge National Laboratory (USA) as well as grating spectrometers optimized for multi-sightline analysis. The first WEST experimental campaign conducted in 2017 has been dedicated to plasma start-up development during which the visible spectroscopy system has provided crucial information related to the impurity content first and then impurity sources. The diagnostic setup for that first experimental campaign was limited to the inner bumper and outer limiters but was sufficient to demonstrate that the optical setup was in accordance with the specifications. The radiance calibration procedure allowed us to estimate fluxes from the main limiter of about 8 × 1018 atoms/(s m2) and to show a first W source radial profile along the outboard limiter.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30399672</pmid><doi>10.1063/1.5035566</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1353-8865</orcidid><orcidid>https://orcid.org/0000-0001-9107-8337</orcidid><orcidid>https://orcid.org/0000000313538865</orcidid><orcidid>https://orcid.org/0000000191078337</orcidid><orcidid>https://orcid.org/0000000345123621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of Scientific Instruments, 2018-10, Vol.89 (10), p.10D105-10D105
issn 0034-6748
1089-7623
language eng
recordid cdi_crossref_primary_10_1063_1_5035566
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bumpers
Cyclotron resonance
Deuterium
Diagnostic systems
Divertors (fusion reactors)
Fluxes
Impurities
Optical fibers
Physics
Radiance
Research facilities
Scientific apparatus & instruments
Spectrometers
Spectrum analysis
Temporal resolution
Tokamak devices
Tungsten
title Visible spectroscopy diagnostics for tungsten source assessment in the WEST tokamak: First measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible%20spectroscopy%20diagnostics%20for%20tungsten%20source%20assessment%20in%20the%20WEST%20tokamak:%20First%20measurements&rft.jtitle=Review%20of%20Scientific%20Instruments&rft.au=Meyer,%20O.&rft.aucorp=WEST%20Team&rft.date=2018-10-01&rft.volume=89&rft.issue=10&rft.spage=10D105&rft.epage=10D105&rft.pages=10D105-10D105&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5035566&rft_dat=%3Cproquest_cross%3E2130800893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087553710&rft_id=info:pmid/30399672&rfr_iscdi=true