Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide
The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semicon...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2018-06, Vol.123 (23) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 123 |
creator | Šimonka, V. Toifl, A. Hössinger, A. Selberherr, S. Weinbub, J. |
description | The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semiconductor for power devices – is currently not available, which significantly limits the predictability of critical fabrication processes. Here, we introduce a transient model for electrical activation of implanted aluminium and phosphorus in silicon carbide to fill this gap. Our results suggest differences between acceptor- and donor-type dopants including activation speed, saturation limit, and activation regions. We predict acceptor and donor concentrations according to the various annealing times, temperatures, and doping concentrations. The results are used for the fabrication of PN-junction diodes, which are characterized and compared with the experimental findings. Finally, we predict improvements of various annealing steps, i.e., increased active concentration, increased carrier concentration, and decreased sheet resistance, and perform a comprehensive comparison with experimental data to evaluate the proposed model. |
doi_str_mv | 10.1063/1.5031185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5031185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088309703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-dad3e65e606dc6a26b540f40068447e2d007f87a7ee825483863d712651819403</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgCo6jC_9BwJVCx5umeXQpgy8YcDOuQyZJMUPb1CQd8N9bnUEXgovL3XycAwehSwILApzekgUDSohkR2hGQNaFYAyO0QygJIWsRX2KzlLaAkyG1jOk1lH3ybs-4y5Y1-ImROxaZ3L0RrdYm-x3OvvQ49Bg3Y6d7_3YYd1bPLyFNF0cU-G7odV9dhYn33ozaaPjxlt3jk4a3SZ3cfhz9Ppwv14-FauXx-fl3aowtBS5sNpSx5njwK3huuQbVkFTAXBZVcKVFkA0UmjhnCxZJank1ApSckYkqSugc3S1zx1ieB9dymobxthPlaoEKSnUAuikrvfKxJBSdI0aou90_FAE1Nd-iqjDfpO92dtkfP5e4AfvQvyFarDNf_hv8idm034f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088309703</pqid></control><display><type>article</type><title>Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Šimonka, V. ; Toifl, A. ; Hössinger, A. ; Selberherr, S. ; Weinbub, J.</creator><creatorcontrib>Šimonka, V. ; Toifl, A. ; Hössinger, A. ; Selberherr, S. ; Weinbub, J.</creatorcontrib><description>The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semiconductor for power devices – is currently not available, which significantly limits the predictability of critical fabrication processes. Here, we introduce a transient model for electrical activation of implanted aluminium and phosphorus in silicon carbide to fill this gap. Our results suggest differences between acceptor- and donor-type dopants including activation speed, saturation limit, and activation regions. We predict acceptor and donor concentrations according to the various annealing times, temperatures, and doping concentrations. The results are used for the fabrication of PN-junction diodes, which are characterized and compared with the experimental findings. Finally, we predict improvements of various annealing steps, i.e., increased active concentration, increased carrier concentration, and decreased sheet resistance, and perform a comprehensive comparison with experimental data to evaluate the proposed model.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5031185</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Activation ; Aluminum ; Annealing ; Applied physics ; Carrier density ; Computer simulation ; Electrical properties ; Electronic devices ; Industrial engineering ; Junction diodes ; Manufacturing engineering ; Mathematical models ; Phosphorus ; Production costs ; Silicon carbide ; Wide bandgap semiconductors</subject><ispartof>Journal of applied physics, 2018-06, Vol.123 (23)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-dad3e65e606dc6a26b540f40068447e2d007f87a7ee825483863d712651819403</citedby><cites>FETCH-LOGICAL-c327t-dad3e65e606dc6a26b540f40068447e2d007f87a7ee825483863d712651819403</cites><orcidid>0000-0001-5969-1932 ; 0000-0001-9283-7112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5031185$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Šimonka, V.</creatorcontrib><creatorcontrib>Toifl, A.</creatorcontrib><creatorcontrib>Hössinger, A.</creatorcontrib><creatorcontrib>Selberherr, S.</creatorcontrib><creatorcontrib>Weinbub, J.</creatorcontrib><title>Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide</title><title>Journal of applied physics</title><description>The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semiconductor for power devices – is currently not available, which significantly limits the predictability of critical fabrication processes. Here, we introduce a transient model for electrical activation of implanted aluminium and phosphorus in silicon carbide to fill this gap. Our results suggest differences between acceptor- and donor-type dopants including activation speed, saturation limit, and activation regions. We predict acceptor and donor concentrations according to the various annealing times, temperatures, and doping concentrations. The results are used for the fabrication of PN-junction diodes, which are characterized and compared with the experimental findings. Finally, we predict improvements of various annealing steps, i.e., increased active concentration, increased carrier concentration, and decreased sheet resistance, and perform a comprehensive comparison with experimental data to evaluate the proposed model.</description><subject>Activation</subject><subject>Aluminum</subject><subject>Annealing</subject><subject>Applied physics</subject><subject>Carrier density</subject><subject>Computer simulation</subject><subject>Electrical properties</subject><subject>Electronic devices</subject><subject>Industrial engineering</subject><subject>Junction diodes</subject><subject>Manufacturing engineering</subject><subject>Mathematical models</subject><subject>Phosphorus</subject><subject>Production costs</subject><subject>Silicon carbide</subject><subject>Wide bandgap semiconductors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAUBeAgCo6jC_9BwJVCx5umeXQpgy8YcDOuQyZJMUPb1CQd8N9bnUEXgovL3XycAwehSwILApzekgUDSohkR2hGQNaFYAyO0QygJIWsRX2KzlLaAkyG1jOk1lH3ybs-4y5Y1-ImROxaZ3L0RrdYm-x3OvvQ49Bg3Y6d7_3YYd1bPLyFNF0cU-G7odV9dhYn33ozaaPjxlt3jk4a3SZ3cfhz9Ppwv14-FauXx-fl3aowtBS5sNpSx5njwK3huuQbVkFTAXBZVcKVFkA0UmjhnCxZJank1ApSckYkqSugc3S1zx1ieB9dymobxthPlaoEKSnUAuikrvfKxJBSdI0aou90_FAE1Nd-iqjDfpO92dtkfP5e4AfvQvyFarDNf_hv8idm034f</recordid><startdate>20180621</startdate><enddate>20180621</enddate><creator>Šimonka, V.</creator><creator>Toifl, A.</creator><creator>Hössinger, A.</creator><creator>Selberherr, S.</creator><creator>Weinbub, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5969-1932</orcidid><orcidid>https://orcid.org/0000-0001-9283-7112</orcidid></search><sort><creationdate>20180621</creationdate><title>Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide</title><author>Šimonka, V. ; Toifl, A. ; Hössinger, A. ; Selberherr, S. ; Weinbub, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-dad3e65e606dc6a26b540f40068447e2d007f87a7ee825483863d712651819403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation</topic><topic>Aluminum</topic><topic>Annealing</topic><topic>Applied physics</topic><topic>Carrier density</topic><topic>Computer simulation</topic><topic>Electrical properties</topic><topic>Electronic devices</topic><topic>Industrial engineering</topic><topic>Junction diodes</topic><topic>Manufacturing engineering</topic><topic>Mathematical models</topic><topic>Phosphorus</topic><topic>Production costs</topic><topic>Silicon carbide</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šimonka, V.</creatorcontrib><creatorcontrib>Toifl, A.</creatorcontrib><creatorcontrib>Hössinger, A.</creatorcontrib><creatorcontrib>Selberherr, S.</creatorcontrib><creatorcontrib>Weinbub, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šimonka, V.</au><au>Toifl, A.</au><au>Hössinger, A.</au><au>Selberherr, S.</au><au>Weinbub, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide</atitle><jtitle>Journal of applied physics</jtitle><date>2018-06-21</date><risdate>2018</risdate><volume>123</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semiconductor for power devices – is currently not available, which significantly limits the predictability of critical fabrication processes. Here, we introduce a transient model for electrical activation of implanted aluminium and phosphorus in silicon carbide to fill this gap. Our results suggest differences between acceptor- and donor-type dopants including activation speed, saturation limit, and activation regions. We predict acceptor and donor concentrations according to the various annealing times, temperatures, and doping concentrations. The results are used for the fabrication of PN-junction diodes, which are characterized and compared with the experimental findings. Finally, we predict improvements of various annealing steps, i.e., increased active concentration, increased carrier concentration, and decreased sheet resistance, and perform a comprehensive comparison with experimental data to evaluate the proposed model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5031185</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5969-1932</orcidid><orcidid>https://orcid.org/0000-0001-9283-7112</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2018-06, Vol.123 (23) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5031185 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Activation Aluminum Annealing Applied physics Carrier density Computer simulation Electrical properties Electronic devices Industrial engineering Junction diodes Manufacturing engineering Mathematical models Phosphorus Production costs Silicon carbide Wide bandgap semiconductors |
title | Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20model%20for%20electrical%20activation%20of%20aluminium%20and%20phosphorus-implanted%20silicon%20carbide&rft.jtitle=Journal%20of%20applied%20physics&rft.au=%C5%A0imonka,%20V.&rft.date=2018-06-21&rft.volume=123&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5031185&rft_dat=%3Cproquest_cross%3E2088309703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088309703&rft_id=info:pmid/&rfr_iscdi=true |