Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide

The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semicon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2018-06, Vol.123 (23)
Hauptverfasser: Šimonka, V., Toifl, A., Hössinger, A., Selberherr, S., Weinbub, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page
container_title Journal of applied physics
container_volume 123
creator Šimonka, V.
Toifl, A.
Hössinger, A.
Selberherr, S.
Weinbub, J.
description The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semiconductor for power devices – is currently not available, which significantly limits the predictability of critical fabrication processes. Here, we introduce a transient model for electrical activation of implanted aluminium and phosphorus in silicon carbide to fill this gap. Our results suggest differences between acceptor- and donor-type dopants including activation speed, saturation limit, and activation regions. We predict acceptor and donor concentrations according to the various annealing times, temperatures, and doping concentrations. The results are used for the fabrication of PN-junction diodes, which are characterized and compared with the experimental findings. Finally, we predict improvements of various annealing steps, i.e., increased active concentration, increased carrier concentration, and decreased sheet resistance, and perform a comprehensive comparison with experimental data to evaluate the proposed model.
doi_str_mv 10.1063/1.5031185
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5031185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088309703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-dad3e65e606dc6a26b540f40068447e2d007f87a7ee825483863d712651819403</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgCo6jC_9BwJVCx5umeXQpgy8YcDOuQyZJMUPb1CQd8N9bnUEXgovL3XycAwehSwILApzekgUDSohkR2hGQNaFYAyO0QygJIWsRX2KzlLaAkyG1jOk1lH3ybs-4y5Y1-ImROxaZ3L0RrdYm-x3OvvQ49Bg3Y6d7_3YYd1bPLyFNF0cU-G7odV9dhYn33ozaaPjxlt3jk4a3SZ3cfhz9Ppwv14-FauXx-fl3aowtBS5sNpSx5njwK3huuQbVkFTAXBZVcKVFkA0UmjhnCxZJank1ApSckYkqSugc3S1zx1ieB9dymobxthPlaoEKSnUAuikrvfKxJBSdI0aou90_FAE1Nd-iqjDfpO92dtkfP5e4AfvQvyFarDNf_hv8idm034f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088309703</pqid></control><display><type>article</type><title>Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Šimonka, V. ; Toifl, A. ; Hössinger, A. ; Selberherr, S. ; Weinbub, J.</creator><creatorcontrib>Šimonka, V. ; Toifl, A. ; Hössinger, A. ; Selberherr, S. ; Weinbub, J.</creatorcontrib><description>The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semiconductor for power devices – is currently not available, which significantly limits the predictability of critical fabrication processes. Here, we introduce a transient model for electrical activation of implanted aluminium and phosphorus in silicon carbide to fill this gap. Our results suggest differences between acceptor- and donor-type dopants including activation speed, saturation limit, and activation regions. We predict acceptor and donor concentrations according to the various annealing times, temperatures, and doping concentrations. The results are used for the fabrication of PN-junction diodes, which are characterized and compared with the experimental findings. Finally, we predict improvements of various annealing steps, i.e., increased active concentration, increased carrier concentration, and decreased sheet resistance, and perform a comprehensive comparison with experimental data to evaluate the proposed model.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5031185</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Activation ; Aluminum ; Annealing ; Applied physics ; Carrier density ; Computer simulation ; Electrical properties ; Electronic devices ; Industrial engineering ; Junction diodes ; Manufacturing engineering ; Mathematical models ; Phosphorus ; Production costs ; Silicon carbide ; Wide bandgap semiconductors</subject><ispartof>Journal of applied physics, 2018-06, Vol.123 (23)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-dad3e65e606dc6a26b540f40068447e2d007f87a7ee825483863d712651819403</citedby><cites>FETCH-LOGICAL-c327t-dad3e65e606dc6a26b540f40068447e2d007f87a7ee825483863d712651819403</cites><orcidid>0000-0001-5969-1932 ; 0000-0001-9283-7112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5031185$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Šimonka, V.</creatorcontrib><creatorcontrib>Toifl, A.</creatorcontrib><creatorcontrib>Hössinger, A.</creatorcontrib><creatorcontrib>Selberherr, S.</creatorcontrib><creatorcontrib>Weinbub, J.</creatorcontrib><title>Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide</title><title>Journal of applied physics</title><description>The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semiconductor for power devices – is currently not available, which significantly limits the predictability of critical fabrication processes. Here, we introduce a transient model for electrical activation of implanted aluminium and phosphorus in silicon carbide to fill this gap. Our results suggest differences between acceptor- and donor-type dopants including activation speed, saturation limit, and activation regions. We predict acceptor and donor concentrations according to the various annealing times, temperatures, and doping concentrations. The results are used for the fabrication of PN-junction diodes, which are characterized and compared with the experimental findings. Finally, we predict improvements of various annealing steps, i.e., increased active concentration, increased carrier concentration, and decreased sheet resistance, and perform a comprehensive comparison with experimental data to evaluate the proposed model.</description><subject>Activation</subject><subject>Aluminum</subject><subject>Annealing</subject><subject>Applied physics</subject><subject>Carrier density</subject><subject>Computer simulation</subject><subject>Electrical properties</subject><subject>Electronic devices</subject><subject>Industrial engineering</subject><subject>Junction diodes</subject><subject>Manufacturing engineering</subject><subject>Mathematical models</subject><subject>Phosphorus</subject><subject>Production costs</subject><subject>Silicon carbide</subject><subject>Wide bandgap semiconductors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAUBeAgCo6jC_9BwJVCx5umeXQpgy8YcDOuQyZJMUPb1CQd8N9bnUEXgovL3XycAwehSwILApzekgUDSohkR2hGQNaFYAyO0QygJIWsRX2KzlLaAkyG1jOk1lH3ybs-4y5Y1-ImROxaZ3L0RrdYm-x3OvvQ49Bg3Y6d7_3YYd1bPLyFNF0cU-G7odV9dhYn33ozaaPjxlt3jk4a3SZ3cfhz9Ppwv14-FauXx-fl3aowtBS5sNpSx5njwK3huuQbVkFTAXBZVcKVFkA0UmjhnCxZJank1ApSckYkqSugc3S1zx1ieB9dymobxthPlaoEKSnUAuikrvfKxJBSdI0aou90_FAE1Nd-iqjDfpO92dtkfP5e4AfvQvyFarDNf_hv8idm034f</recordid><startdate>20180621</startdate><enddate>20180621</enddate><creator>Šimonka, V.</creator><creator>Toifl, A.</creator><creator>Hössinger, A.</creator><creator>Selberherr, S.</creator><creator>Weinbub, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5969-1932</orcidid><orcidid>https://orcid.org/0000-0001-9283-7112</orcidid></search><sort><creationdate>20180621</creationdate><title>Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide</title><author>Šimonka, V. ; Toifl, A. ; Hössinger, A. ; Selberherr, S. ; Weinbub, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-dad3e65e606dc6a26b540f40068447e2d007f87a7ee825483863d712651819403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation</topic><topic>Aluminum</topic><topic>Annealing</topic><topic>Applied physics</topic><topic>Carrier density</topic><topic>Computer simulation</topic><topic>Electrical properties</topic><topic>Electronic devices</topic><topic>Industrial engineering</topic><topic>Junction diodes</topic><topic>Manufacturing engineering</topic><topic>Mathematical models</topic><topic>Phosphorus</topic><topic>Production costs</topic><topic>Silicon carbide</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šimonka, V.</creatorcontrib><creatorcontrib>Toifl, A.</creatorcontrib><creatorcontrib>Hössinger, A.</creatorcontrib><creatorcontrib>Selberherr, S.</creatorcontrib><creatorcontrib>Weinbub, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šimonka, V.</au><au>Toifl, A.</au><au>Hössinger, A.</au><au>Selberherr, S.</au><au>Weinbub, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide</atitle><jtitle>Journal of applied physics</jtitle><date>2018-06-21</date><risdate>2018</risdate><volume>123</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semiconductor for power devices – is currently not available, which significantly limits the predictability of critical fabrication processes. Here, we introduce a transient model for electrical activation of implanted aluminium and phosphorus in silicon carbide to fill this gap. Our results suggest differences between acceptor- and donor-type dopants including activation speed, saturation limit, and activation regions. We predict acceptor and donor concentrations according to the various annealing times, temperatures, and doping concentrations. The results are used for the fabrication of PN-junction diodes, which are characterized and compared with the experimental findings. Finally, we predict improvements of various annealing steps, i.e., increased active concentration, increased carrier concentration, and decreased sheet resistance, and perform a comprehensive comparison with experimental data to evaluate the proposed model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5031185</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5969-1932</orcidid><orcidid>https://orcid.org/0000-0001-9283-7112</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2018-06, Vol.123 (23)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_5031185
source AIP Journals Complete; Alma/SFX Local Collection
subjects Activation
Aluminum
Annealing
Applied physics
Carrier density
Computer simulation
Electrical properties
Electronic devices
Industrial engineering
Junction diodes
Manufacturing engineering
Mathematical models
Phosphorus
Production costs
Silicon carbide
Wide bandgap semiconductors
title Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20model%20for%20electrical%20activation%20of%20aluminium%20and%20phosphorus-implanted%20silicon%20carbide&rft.jtitle=Journal%20of%20applied%20physics&rft.au=%C5%A0imonka,%20V.&rft.date=2018-06-21&rft.volume=123&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5031185&rft_dat=%3Cproquest_cross%3E2088309703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088309703&rft_id=info:pmid/&rfr_iscdi=true