Unexpected metal-insulator transition in thick Ca1- x Sr x VO3 film on SrTiO3 (100) single crystal
Epitaxial Ca1-xSrxVO3 (0 ≦ x ≦ 1) thin films were grown on (100)-oriented SrTiO3 substrates by using the pulsed laser deposition technique. In contrast to the previous report that metal-insulator transition (MIT) in Ca1-xSrxVO3 (CSVO) was achieved only for extremely thin films (several nm thick), MI...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-03, Vol.112 (13) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epitaxial Ca1-xSrxVO3 (0 ≦ x ≦ 1) thin films were grown on (100)-oriented SrTiO3 substrates by using the pulsed laser deposition technique. In contrast to the previous report that metal-insulator transition (MIT) in Ca1-xSrxVO3 (CSVO) was achieved only for extremely thin films (several nm thick), MIT was observed at 39, 72, and 113 K for films with a thickness of 50 nm. The electronic structure was investigated by hard and soft X-ray photoemission spectroscopy (HX-PES and SX-PES). The difference between these PES results was significant due to the variation in an escape depth of photoelectrons of PES. While HX-PES showed that the V 2p3/2 spectra consisted of four peaks (V5+, V4+, V3+, and V2+/1+), SX-PES showed only three peaks (V5+, V4+, and V3+). This difference can be caused by a strain from the substrate, which leads to the chemical disorder (V5+, V4+, V3+, and V2+/1+). The thin film near the substrate is affected by the strain. The positive magnetoresistance is attributed to the effect of electron-electron interactions in the disorder system. Therefore, the emergence of MIT can be explained by the electron-electron interactions from the chemical disorder due to the strain. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5021618 |