Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths

The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2018-05, Vol.25 (5)
Hauptverfasser: Chen, B., Xu, X. Q., Xia, T. Y., Li, N. M., Porkolab, M., Edlund, E., LaBombard, B., Terry, J., Hughes, J. W., Ye, M. Y., Wan, Y. X.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of plasmas
container_volume 25
creator Chen, B.
Xu, X. Q.
Xia, T. Y.
Li, N. M.
Porkolab, M.
Edlund, E.
LaBombard, B.
Terry, J.
Hughes, J. W.
Ye, M. Y.
Wan, Y. X.
description The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.
doi_str_mv 10.1063/1.5016582
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5016582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-6fa27a51b16bbe078b2b6a7dc2f62cc15705e9aa67ade5bdf0f0a227a21d0583</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhQdRsFYX_oPgTmFqkpkk7VKKLyjoogt3w5082tiZpCSZVsEf7wwtuHd1D_d-58A9WXZN8IRgXtyTCcOEsyk9yUYET2e54KI8HbTAOeflx3l2EeMnxrjsqVH28x78KugYUfJ7CCqi1ivdWLfqFxtoYYNq3zkF4RttG4gtoNSFumu0kxqBU6g_6hBTLweTTREF32hkHYo6pWGn7E6H5ANaa0jINN0X2luV1vEyOzPQRH11nONs-fS4nL_ki7fn1_nDIpclFSnnBqgARmrC61pjMa1pzUEoSQ2nUhImMNMzAC5AaVYrgw0G2lsoUZhNi3F2c4j1MdkqSpu0XEvvnJapImXBGWM9dHuAZPAxBm2qbbBt_3ZFcDVUW5HqWG3P3h3YIQuS9e5_8M6HP7DaKlP8Aiq8izw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, B. ; Xu, X. Q. ; Xia, T. Y. ; Li, N. M. ; Porkolab, M. ; Edlund, E. ; LaBombard, B. ; Terry, J. ; Hughes, J. W. ; Ye, M. Y. ; Wan, Y. X.</creator><creatorcontrib>Chen, B. ; Xu, X. Q. ; Xia, T. Y. ; Li, N. M. ; Porkolab, M. ; Edlund, E. ; LaBombard, B. ; Terry, J. ; Hughes, J. W. ; Ye, M. Y. ; Wan, Y. X.</creatorcontrib><description>The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5016582</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>Physics of plasmas, 2018-05, Vol.25 (5)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-6fa27a51b16bbe078b2b6a7dc2f62cc15705e9aa67ade5bdf0f0a227a21d0583</citedby><cites>FETCH-LOGICAL-c427t-6fa27a51b16bbe078b2b6a7dc2f62cc15705e9aa67ade5bdf0f0a227a21d0583</cites><orcidid>0000-0003-1838-9790 ; 0000-0003-4255-5509 ; 0000-0003-0175-3568 ; 0000-0003-4802-4944 ; 0000000318389790 ; 0000000348024944 ; 0000000342555509 ; 0000000301753568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5016582$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27923,27924,76155</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1436555$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, B.</creatorcontrib><creatorcontrib>Xu, X. Q.</creatorcontrib><creatorcontrib>Xia, T. Y.</creatorcontrib><creatorcontrib>Li, N. M.</creatorcontrib><creatorcontrib>Porkolab, M.</creatorcontrib><creatorcontrib>Edlund, E.</creatorcontrib><creatorcontrib>LaBombard, B.</creatorcontrib><creatorcontrib>Terry, J.</creatorcontrib><creatorcontrib>Hughes, J. W.</creatorcontrib><creatorcontrib>Ye, M. Y.</creatorcontrib><creatorcontrib>Wan, Y. X.</creatorcontrib><title>Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths</title><title>Physics of plasmas</title><description>The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.</description><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhQdRsFYX_oPgTmFqkpkk7VKKLyjoogt3w5082tiZpCSZVsEf7wwtuHd1D_d-58A9WXZN8IRgXtyTCcOEsyk9yUYET2e54KI8HbTAOeflx3l2EeMnxrjsqVH28x78KugYUfJ7CCqi1ivdWLfqFxtoYYNq3zkF4RttG4gtoNSFumu0kxqBU6g_6hBTLweTTREF32hkHYo6pWGn7E6H5ANaa0jINN0X2luV1vEyOzPQRH11nONs-fS4nL_ki7fn1_nDIpclFSnnBqgARmrC61pjMa1pzUEoSQ2nUhImMNMzAC5AaVYrgw0G2lsoUZhNi3F2c4j1MdkqSpu0XEvvnJapImXBGWM9dHuAZPAxBm2qbbBt_3ZFcDVUW5HqWG3P3h3YIQuS9e5_8M6HP7DaKlP8Aiq8izw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Chen, B.</creator><creator>Xu, X. Q.</creator><creator>Xia, T. Y.</creator><creator>Li, N. M.</creator><creator>Porkolab, M.</creator><creator>Edlund, E.</creator><creator>LaBombard, B.</creator><creator>Terry, J.</creator><creator>Hughes, J. W.</creator><creator>Ye, M. Y.</creator><creator>Wan, Y. X.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1838-9790</orcidid><orcidid>https://orcid.org/0000-0003-4255-5509</orcidid><orcidid>https://orcid.org/0000-0003-0175-3568</orcidid><orcidid>https://orcid.org/0000-0003-4802-4944</orcidid><orcidid>https://orcid.org/0000000318389790</orcidid><orcidid>https://orcid.org/0000000348024944</orcidid><orcidid>https://orcid.org/0000000342555509</orcidid><orcidid>https://orcid.org/0000000301753568</orcidid></search><sort><creationdate>201805</creationdate><title>Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths</title><author>Chen, B. ; Xu, X. Q. ; Xia, T. Y. ; Li, N. M. ; Porkolab, M. ; Edlund, E. ; LaBombard, B. ; Terry, J. ; Hughes, J. W. ; Ye, M. Y. ; Wan, Y. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-6fa27a51b16bbe078b2b6a7dc2f62cc15705e9aa67ade5bdf0f0a227a21d0583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, B.</creatorcontrib><creatorcontrib>Xu, X. Q.</creatorcontrib><creatorcontrib>Xia, T. Y.</creatorcontrib><creatorcontrib>Li, N. M.</creatorcontrib><creatorcontrib>Porkolab, M.</creatorcontrib><creatorcontrib>Edlund, E.</creatorcontrib><creatorcontrib>LaBombard, B.</creatorcontrib><creatorcontrib>Terry, J.</creatorcontrib><creatorcontrib>Hughes, J. W.</creatorcontrib><creatorcontrib>Ye, M. Y.</creatorcontrib><creatorcontrib>Wan, Y. X.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, B.</au><au>Xu, X. Q.</au><au>Xia, T. Y.</au><au>Li, N. M.</au><au>Porkolab, M.</au><au>Edlund, E.</au><au>LaBombard, B.</au><au>Terry, J.</au><au>Hughes, J. W.</au><au>Ye, M. Y.</au><au>Wan, Y. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths</atitle><jtitle>Physics of plasmas</jtitle><date>2018-05</date><risdate>2018</risdate><volume>25</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5016582</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1838-9790</orcidid><orcidid>https://orcid.org/0000-0003-4255-5509</orcidid><orcidid>https://orcid.org/0000-0003-0175-3568</orcidid><orcidid>https://orcid.org/0000-0003-4802-4944</orcidid><orcidid>https://orcid.org/0000000318389790</orcidid><orcidid>https://orcid.org/0000000348024944</orcidid><orcidid>https://orcid.org/0000000342555509</orcidid><orcidid>https://orcid.org/0000000301753568</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2018-05, Vol.25 (5)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_1_5016582
source AIP Journals Complete; Alma/SFX Local Collection
title Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20towards%20modeling%20tokamak%20boundary%20plasma%20turbulence%20and%20understanding%20its%20role%20in%20setting%20divertor%20heat%20flux%20widths&rft.jtitle=Physics%20of%20plasmas&rft.au=Chen,%20B.&rft.date=2018-05&rft.volume=25&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5016582&rft_dat=%3Cscitation_cross%3Epop%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true