Self-consistency of electron-THF cross sections using electron swarm techniques

The drift velocity and first Townsend ionization coefficient of electrons in gaseous tetrahydrofuran are measured over the range of reduced electric fields 4-1000 Td using a pulsed-Townsend technique. The measured drift velocities and Townsend ionization coefficients are subsequently used, in conjun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2017-11, Vol.147 (19), p.195103-195103
Hauptverfasser: Casey, M. J. E., de Urquijo, J., Serkovic Loli, L. N., Cocks, D. G., Boyle, G. J., Jones, D. B., Brunger, M. J., White, R. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The drift velocity and first Townsend ionization coefficient of electrons in gaseous tetrahydrofuran are measured over the range of reduced electric fields 4-1000 Td using a pulsed-Townsend technique. The measured drift velocities and Townsend ionization coefficients are subsequently used, in conjunction with a multi-term Boltzmann equation analysis, as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-THF vapor cross sections. In addition, the sensitivity of the transport coefficients to uncertainties in the existing cross sections is presented. As a result of that analysis, a refinement of the momentum transfer cross section for electron-THF scattering is presented, along with modifications to the neutral dissociation and dissociative electron attachment cross sections. With these changes to the cross section database, we find relatively good self-consistency between the measured and simulated drift velocities and Townsend coefficients.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5004717