Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials

We report the magnetic and electron spin resonance (ESR) properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15%) in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc) (1300-2200 Oe)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2018-05, Vol.8 (5), p.055801-055801-6
Hauptverfasser: Singamaneni, S. R., Martinez, L. M., Swadipta, R., Ramana, C. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 055801-6
container_issue 5
container_start_page 055801
container_title AIP advances
container_volume 8
creator Singamaneni, S. R.
Martinez, L. M.
Swadipta, R.
Ramana, C. V.
description We report the magnetic and electron spin resonance (ESR) properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15%) in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc) (1300-2200 Oe) and saturation magnetization MS (35-82 emu/g) vary strongly as a function of W doping at all the temperatures (4-300 K) measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC) and field cooled (FC, 1000 Oe) magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation). This observation is corroborated by ESR (9.398 GHz) measurements collected as a function of temperature (10-150 K) and W doping (0-15%). We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.
doi_str_mv 10.1063/1.5003826
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5003826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02817f5cfab3466485d32eeb00bc3a30</doaj_id><sourcerecordid>2116022675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3cad2e7378c6abcab233f9dc216e780dd1254422eb1dd60defb3e5f0b28920b63</originalsourceid><addsrcrecordid>eNp9kctKw0AUhoMoWGoXvsGAK4XUuSSTZCnFaqHSjSKuhrmclCnpTJyZLvr2RlPElWfzHw4f_7ll2TXBc4I5uyfzEmNWU36WTSgp65xRys__5JfZLMYdHqJoCK6LSfbxIrcOktVIOoOgA52Cdyj21qEA0TvpNKCYDsZCRL5F78j4Hgxa-CXQTYF63x11OMYku846QHuZIFjZxavsoh0EZiedZm_Lx9fFc77ePK0WD-tcs4alnGlpKFSsqjWXSktFGWsboynhUNXYGELLoqAUFDGGYwOtYlC2WNG6oVhxNs1Wo6_xcif6YPcyHIWXVvwUfNgKGYYFOxCY1qRqS91KxQrOi7o0jAIojJVmkuHB62b06oP_PEBMYucPwQ3jC0oIx8MJq3KgbkdKBx9jgPa3K8Hi-xGCiNMjBvZuZKO2SSbr3T_wF1nvhv0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116022675</pqid></control><display><type>article</type><title>Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Singamaneni, S. R. ; Martinez, L. M. ; Swadipta, R. ; Ramana, C. V.</creator><creatorcontrib>Singamaneni, S. R. ; Martinez, L. M. ; Swadipta, R. ; Ramana, C. V.</creatorcontrib><description>We report the magnetic and electron spin resonance (ESR) properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15%) in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc) (1300-2200 Oe) and saturation magnetization MS (35-82 emu/g) vary strongly as a function of W doping at all the temperatures (4-300 K) measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC) and field cooled (FC, 1000 Oe) magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation). This observation is corroborated by ESR (9.398 GHz) measurements collected as a function of temperature (10-150 K) and W doping (0-15%). We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5003826</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cobalt ferrites ; Coercivity ; Doping ; Electron paramagnetic resonance ; Electron spin ; Electrons ; Lattice vacancies ; Magnetic anisotropy ; Magnetic properties ; Magnetic saturation ; Magnetization ; Phase separation ; Polycrystals ; Spin resonance ; Temperature dependence</subject><ispartof>AIP advances, 2018-05, Vol.8 (5), p.055801-055801-6</ispartof><rights>Author(s)</rights><rights>2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3cad2e7378c6abcab233f9dc216e780dd1254422eb1dd60defb3e5f0b28920b63</citedby><cites>FETCH-LOGICAL-c393t-3cad2e7378c6abcab233f9dc216e780dd1254422eb1dd60defb3e5f0b28920b63</cites><orcidid>0000-0002-0512-573X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,27905,27906</link.rule.ids></links><search><creatorcontrib>Singamaneni, S. R.</creatorcontrib><creatorcontrib>Martinez, L. M.</creatorcontrib><creatorcontrib>Swadipta, R.</creatorcontrib><creatorcontrib>Ramana, C. V.</creatorcontrib><title>Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials</title><title>AIP advances</title><description>We report the magnetic and electron spin resonance (ESR) properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15%) in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc) (1300-2200 Oe) and saturation magnetization MS (35-82 emu/g) vary strongly as a function of W doping at all the temperatures (4-300 K) measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC) and field cooled (FC, 1000 Oe) magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation). This observation is corroborated by ESR (9.398 GHz) measurements collected as a function of temperature (10-150 K) and W doping (0-15%). We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.</description><subject>Cobalt ferrites</subject><subject>Coercivity</subject><subject>Doping</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Lattice vacancies</subject><subject>Magnetic anisotropy</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetization</subject><subject>Phase separation</subject><subject>Polycrystals</subject><subject>Spin resonance</subject><subject>Temperature dependence</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctKw0AUhoMoWGoXvsGAK4XUuSSTZCnFaqHSjSKuhrmclCnpTJyZLvr2RlPElWfzHw4f_7ll2TXBc4I5uyfzEmNWU36WTSgp65xRys__5JfZLMYdHqJoCK6LSfbxIrcOktVIOoOgA52Cdyj21qEA0TvpNKCYDsZCRL5F78j4Hgxa-CXQTYF63x11OMYku846QHuZIFjZxavsoh0EZiedZm_Lx9fFc77ePK0WD-tcs4alnGlpKFSsqjWXSktFGWsboynhUNXYGELLoqAUFDGGYwOtYlC2WNG6oVhxNs1Wo6_xcif6YPcyHIWXVvwUfNgKGYYFOxCY1qRqS91KxQrOi7o0jAIojJVmkuHB62b06oP_PEBMYucPwQ3jC0oIx8MJq3KgbkdKBx9jgPa3K8Hi-xGCiNMjBvZuZKO2SSbr3T_wF1nvhv0</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Singamaneni, S. R.</creator><creator>Martinez, L. M.</creator><creator>Swadipta, R.</creator><creator>Ramana, C. V.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0512-573X</orcidid></search><sort><creationdate>201805</creationdate><title>Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials</title><author>Singamaneni, S. R. ; Martinez, L. M. ; Swadipta, R. ; Ramana, C. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3cad2e7378c6abcab233f9dc216e780dd1254422eb1dd60defb3e5f0b28920b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cobalt ferrites</topic><topic>Coercivity</topic><topic>Doping</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Lattice vacancies</topic><topic>Magnetic anisotropy</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetization</topic><topic>Phase separation</topic><topic>Polycrystals</topic><topic>Spin resonance</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singamaneni, S. R.</creatorcontrib><creatorcontrib>Martinez, L. M.</creatorcontrib><creatorcontrib>Swadipta, R.</creatorcontrib><creatorcontrib>Ramana, C. V.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singamaneni, S. R.</au><au>Martinez, L. M.</au><au>Swadipta, R.</au><au>Ramana, C. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials</atitle><jtitle>AIP advances</jtitle><date>2018-05</date><risdate>2018</risdate><volume>8</volume><issue>5</issue><spage>055801</spage><epage>055801-6</epage><pages>055801-055801-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>We report the magnetic and electron spin resonance (ESR) properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15%) in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc) (1300-2200 Oe) and saturation magnetization MS (35-82 emu/g) vary strongly as a function of W doping at all the temperatures (4-300 K) measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC) and field cooled (FC, 1000 Oe) magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation). This observation is corroborated by ESR (9.398 GHz) measurements collected as a function of temperature (10-150 K) and W doping (0-15%). We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5003826</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0512-573X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2018-05, Vol.8 (5), p.055801-055801-6
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_1_5003826
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Cobalt ferrites
Coercivity
Doping
Electron paramagnetic resonance
Electron spin
Electrons
Lattice vacancies
Magnetic anisotropy
Magnetic properties
Magnetic saturation
Magnetization
Phase separation
Polycrystals
Spin resonance
Temperature dependence
title Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20and%20electron%20spin%20resonance%20studies%20of%20W%20doped%20CoFe2O4%20polycrystalline%20materials&rft.jtitle=AIP%20advances&rft.au=Singamaneni,%20S.%20R.&rft.date=2018-05&rft.volume=8&rft.issue=5&rft.spage=055801&rft.epage=055801-6&rft.pages=055801-055801-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5003826&rft_dat=%3Cproquest_cross%3E2116022675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116022675&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_02817f5cfab3466485d32eeb00bc3a30&rfr_iscdi=true