Surface recombination velocity imaging of wet-cleaned silicon wafers using quantitative heterodyne lock-in carrierography
InGaAs-camera based heterodyne lock-in carrierography (HeLIC) is developed for surface recombination velocity (SRV) imaging characterization of bare (oxide-free) hydrogen passivated Si wafer surfaces. Samples prepared using four different hydrofluoric special-solution etching conditions were tested,...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-01, Vol.112 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 112 |
creator | Sun, Qiming Melnikov, Alexander Mandelis, Andreas Pagliaro, Robert H. |
description | InGaAs-camera based heterodyne lock-in carrierography (HeLIC) is developed for surface recombination velocity (SRV) imaging characterization of bare (oxide-free) hydrogen passivated Si wafer surfaces. Samples prepared using four different hydrofluoric special-solution etching conditions were tested, and a quantitative assessment of their surface quality vs. queue-time after the hydrogen passivation process was made. The data acquisition time for an SRV image was about 3 min. A “round-trip” frequency-scan mode was introduced to minimize the effects of signal transients on data self-consistency. Simultaneous best fitting of HeLIC amplitude-frequency dependencies at various queue-times was used to guarantee the reliability of resolving surface and bulk carrier recombination/transport properties. The dynamic range of the measured SRV values was established from 0.1 to 100 m/s. |
doi_str_mv | 10.1063/1.5003260 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5003260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115974982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8708f0622ca3c4f9fdda6990e16e33f46c243a60537b18bd521181c0480658e33</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pwW8Q8KTQmZc2bY8ivsHAg3oOWZpsmV3SJelGv72ZG3oQPIXn4cc__B8ALjGaYMToLZ4UCFHC0BEYYVSWGcW4OgYjlLYZqwt8Cs5CWKaxIJSOwPDWey2kgl5Jt5oZK6JxFm5U66SJAzQrMTd2Dp2GWxUz2SphVQODaY1Mbiu08gH2YWfWvbDRxJSwUXChovKuGayCKeozMxZK4b1Jy7kX3WI4BydatEFdHN4x-Hh8eL9_zqavTy_3d9NMUlLGrCpRpREjRAoqc13rphGsrpHCTFGqcyZJTgVDBS1nuJo1BUmFsUR5hVhRJTIGV_vczrt1r0LkS9d7m77kiRZ1mdcVSep6r6R3IXileedTdz9wjPjushzzw2WTvdnbIL_bOvuDN87_Qt41-j_8N_kLx6aIiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115974982</pqid></control><display><type>article</type><title>Surface recombination velocity imaging of wet-cleaned silicon wafers using quantitative heterodyne lock-in carrierography</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sun, Qiming ; Melnikov, Alexander ; Mandelis, Andreas ; Pagliaro, Robert H.</creator><creatorcontrib>Sun, Qiming ; Melnikov, Alexander ; Mandelis, Andreas ; Pagliaro, Robert H.</creatorcontrib><description>InGaAs-camera based heterodyne lock-in carrierography (HeLIC) is developed for surface recombination velocity (SRV) imaging characterization of bare (oxide-free) hydrogen passivated Si wafer surfaces. Samples prepared using four different hydrofluoric special-solution etching conditions were tested, and a quantitative assessment of their surface quality vs. queue-time after the hydrogen passivation process was made. The data acquisition time for an SRV image was about 3 min. A “round-trip” frequency-scan mode was introduced to minimize the effects of signal transients on data self-consistency. Simultaneous best fitting of HeLIC amplitude-frequency dependencies at various queue-times was used to guarantee the reliability of resolving surface and bulk carrier recombination/transport properties. The dynamic range of the measured SRV values was established from 0.1 to 100 m/s.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5003260</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carrier recombination ; Image acquisition ; Queues ; Rangefinding ; Silicon ; Silicon wafers ; Surface properties</subject><ispartof>Applied physics letters, 2018-01, Vol.112 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8708f0622ca3c4f9fdda6990e16e33f46c243a60537b18bd521181c0480658e33</citedby><cites>FETCH-LOGICAL-c327t-8708f0622ca3c4f9fdda6990e16e33f46c243a60537b18bd521181c0480658e33</cites><orcidid>0000-0003-3437-7829 ; 0000-0003-1184-3719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5003260$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Sun, Qiming</creatorcontrib><creatorcontrib>Melnikov, Alexander</creatorcontrib><creatorcontrib>Mandelis, Andreas</creatorcontrib><creatorcontrib>Pagliaro, Robert H.</creatorcontrib><title>Surface recombination velocity imaging of wet-cleaned silicon wafers using quantitative heterodyne lock-in carrierography</title><title>Applied physics letters</title><description>InGaAs-camera based heterodyne lock-in carrierography (HeLIC) is developed for surface recombination velocity (SRV) imaging characterization of bare (oxide-free) hydrogen passivated Si wafer surfaces. Samples prepared using four different hydrofluoric special-solution etching conditions were tested, and a quantitative assessment of their surface quality vs. queue-time after the hydrogen passivation process was made. The data acquisition time for an SRV image was about 3 min. A “round-trip” frequency-scan mode was introduced to minimize the effects of signal transients on data self-consistency. Simultaneous best fitting of HeLIC amplitude-frequency dependencies at various queue-times was used to guarantee the reliability of resolving surface and bulk carrier recombination/transport properties. The dynamic range of the measured SRV values was established from 0.1 to 100 m/s.</description><subject>Applied physics</subject><subject>Carrier recombination</subject><subject>Image acquisition</subject><subject>Queues</subject><subject>Rangefinding</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Surface properties</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgCs7pwW8Q8KTQmZc2bY8ivsHAg3oOWZpsmV3SJelGv72ZG3oQPIXn4cc__B8ALjGaYMToLZ4UCFHC0BEYYVSWGcW4OgYjlLYZqwt8Cs5CWKaxIJSOwPDWey2kgl5Jt5oZK6JxFm5U66SJAzQrMTd2Dp2GWxUz2SphVQODaY1Mbiu08gH2YWfWvbDRxJSwUXChovKuGayCKeozMxZK4b1Jy7kX3WI4BydatEFdHN4x-Hh8eL9_zqavTy_3d9NMUlLGrCpRpREjRAoqc13rphGsrpHCTFGqcyZJTgVDBS1nuJo1BUmFsUR5hVhRJTIGV_vczrt1r0LkS9d7m77kiRZ1mdcVSep6r6R3IXileedTdz9wjPjushzzw2WTvdnbIL_bOvuDN87_Qt41-j_8N_kLx6aIiQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Sun, Qiming</creator><creator>Melnikov, Alexander</creator><creator>Mandelis, Andreas</creator><creator>Pagliaro, Robert H.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3437-7829</orcidid><orcidid>https://orcid.org/0000-0003-1184-3719</orcidid></search><sort><creationdate>20180101</creationdate><title>Surface recombination velocity imaging of wet-cleaned silicon wafers using quantitative heterodyne lock-in carrierography</title><author>Sun, Qiming ; Melnikov, Alexander ; Mandelis, Andreas ; Pagliaro, Robert H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8708f0622ca3c4f9fdda6990e16e33f46c243a60537b18bd521181c0480658e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Carrier recombination</topic><topic>Image acquisition</topic><topic>Queues</topic><topic>Rangefinding</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Qiming</creatorcontrib><creatorcontrib>Melnikov, Alexander</creatorcontrib><creatorcontrib>Mandelis, Andreas</creatorcontrib><creatorcontrib>Pagliaro, Robert H.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Qiming</au><au>Melnikov, Alexander</au><au>Mandelis, Andreas</au><au>Pagliaro, Robert H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface recombination velocity imaging of wet-cleaned silicon wafers using quantitative heterodyne lock-in carrierography</atitle><jtitle>Applied physics letters</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>112</volume><issue>1</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>InGaAs-camera based heterodyne lock-in carrierography (HeLIC) is developed for surface recombination velocity (SRV) imaging characterization of bare (oxide-free) hydrogen passivated Si wafer surfaces. Samples prepared using four different hydrofluoric special-solution etching conditions were tested, and a quantitative assessment of their surface quality vs. queue-time after the hydrogen passivation process was made. The data acquisition time for an SRV image was about 3 min. A “round-trip” frequency-scan mode was introduced to minimize the effects of signal transients on data self-consistency. Simultaneous best fitting of HeLIC amplitude-frequency dependencies at various queue-times was used to guarantee the reliability of resolving surface and bulk carrier recombination/transport properties. The dynamic range of the measured SRV values was established from 0.1 to 100 m/s.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5003260</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3437-7829</orcidid><orcidid>https://orcid.org/0000-0003-1184-3719</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-01, Vol.112 (1) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5003260 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Carrier recombination Image acquisition Queues Rangefinding Silicon Silicon wafers Surface properties |
title | Surface recombination velocity imaging of wet-cleaned silicon wafers using quantitative heterodyne lock-in carrierography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20recombination%20velocity%20imaging%20of%20wet-cleaned%20silicon%20wafers%20using%20quantitative%20heterodyne%20lock-in%20carrierography&rft.jtitle=Applied%20physics%20letters&rft.au=Sun,%20Qiming&rft.date=2018-01-01&rft.volume=112&rft.issue=1&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5003260&rft_dat=%3Cproquest_cross%3E2115974982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115974982&rft_id=info:pmid/&rfr_iscdi=true |