Particle-like structure of coaxial Lie algebras

This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-01, Vol.59 (1)
1. Verfasser: Vinogradov, A. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematical physics
container_volume 59
creator Vinogradov, A. M.
description This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.
doi_str_mv 10.1063/1.5001787
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5001787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-7b4fc209f2e5f9428ad66ca686b049ca171036b02a8afbc0ccc1b2e0f0d37ae53</originalsourceid><addsrcrecordid>eNp9z0FLxDAUBOAgCtbVg_-gV4XsvqRpkh5l0VUo6EHP5eVtItFqJcmC_nsru2dPM4ePgWHsUsBSgG5WYtkCCGPNEasE2I4b3dpjVgFIyaWy9pSd5fw2G2GVqtjqCVOJNHo-xndf55J2VHbJ11OoacLviGPdR1_j-OpdwnzOTgKO2V8ccsFe7m6f1_e8f9w8rG96TlKrwo1TgSR0Qfo2dEpa3GpNqK12oDpCYQQ0c5doMTgCIhJOegiwbQz6tlmwq_0upSnn5MPwleIHpp9BwPD3dBDD4elsr_c2UyxY4vT5D_4FzThSlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Particle-like structure of coaxial Lie algebras</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Vinogradov, A. M.</creator><creatorcontrib>Vinogradov, A. M.</creatorcontrib><description>This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5001787</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 2018-01, Vol.59 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-7b4fc209f2e5f9428ad66ca686b049ca171036b02a8afbc0ccc1b2e0f0d37ae53</citedby><cites>FETCH-LOGICAL-c264t-7b4fc209f2e5f9428ad66ca686b049ca171036b02a8afbc0ccc1b2e0f0d37ae53</cites><orcidid>0000-0002-1501-0012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5001787$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Vinogradov, A. M.</creatorcontrib><title>Particle-like structure of coaxial Lie algebras</title><title>Journal of mathematical physics</title><description>This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9z0FLxDAUBOAgCtbVg_-gV4XsvqRpkh5l0VUo6EHP5eVtItFqJcmC_nsru2dPM4ePgWHsUsBSgG5WYtkCCGPNEasE2I4b3dpjVgFIyaWy9pSd5fw2G2GVqtjqCVOJNHo-xndf55J2VHbJ11OoacLviGPdR1_j-OpdwnzOTgKO2V8ccsFe7m6f1_e8f9w8rG96TlKrwo1TgSR0Qfo2dEpa3GpNqK12oDpCYQQ0c5doMTgCIhJOegiwbQz6tlmwq_0upSnn5MPwleIHpp9BwPD3dBDD4elsr_c2UyxY4vT5D_4FzThSlQ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Vinogradov, A. M.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1501-0012</orcidid></search><sort><creationdate>201801</creationdate><title>Particle-like structure of coaxial Lie algebras</title><author>Vinogradov, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-7b4fc209f2e5f9428ad66ca686b049ca171036b02a8afbc0ccc1b2e0f0d37ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinogradov, A. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinogradov, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle-like structure of coaxial Lie algebras</atitle><jtitle>Journal of mathematical physics</jtitle><date>2018-01</date><risdate>2018</risdate><volume>59</volume><issue>1</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.</abstract><doi>10.1063/1.5001787</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-1501-0012</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2018-01, Vol.59 (1)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_5001787
source AIP Journals Complete; Alma/SFX Local Collection
title Particle-like structure of coaxial Lie algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle-like%20structure%20of%20coaxial%20Lie%20algebras&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Vinogradov,%20A.%20M.&rft.date=2018-01&rft.volume=59&rft.issue=1&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5001787&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true