Polymorphic improvement of Stillinger-Weber potential for InGaN
A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wu...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2017-12, Vol.122 (23) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 122 |
creator | Zhou, X. W. Jones, R. E. Chu, K. |
description | A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds and elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems. |
doi_str_mv | 10.1063/1.5001339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5001339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116009087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-a8b2b8f557da1f21911fd1f629855dbd24d7ee5571e6cb39eb431c277b7621753</originalsourceid><addsrcrecordid>eNqd0E1LwzAYB_AgCs7pwW9Q9KTQmSdZmuQkMnQOhgoqHkObJi6jbWqaDfbt7ejAu6fn8P_xvCF0CXgCOKN3MGEYA6XyCI0AC5lyxvAxGmFMIBWSy1N01nXr3oCgcoTu33y1q31oV04nrm6D35raNDHxNnmPrqpc821C-mUKE5LWxz5yeZVYH5JFM89fztGJzavOXBzqGH0-PX7MntPl63wxe1immgoZ01wUpBCWMV7mYAlIAFuCzYgUjJVFSaYlN6aPwWS6oNIUUwqacF7wjABndIyuhr6-i0512kWjV9o3jdFRwZRABrxH1wPqz_jZmC6qtd-Ept9LEYAMY4nFXt0MSgffdcFY1QZX52GnAKv9ExWowxN7ezvY_cQ8Ot_8D299-IOqLS39BdmHfjI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116009087</pqid></control><display><type>article</type><title>Polymorphic improvement of Stillinger-Weber potential for InGaN</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhou, X. W. ; Jones, R. E. ; Chu, K.</creator><creatorcontrib>Zhou, X. W. ; Jones, R. E. ; Chu, K. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds and elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5001339</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alloy systems ; Alloying elements ; Applied physics ; Computer simulation ; Constraining ; Crystal defects ; Crystal structure ; Diamonds ; Elastic limit ; Elastic moduli ; Elastic properties ; Indium gallium nitrides ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Intermolecular forces ; MATERIALS SCIENCE ; Molecular dynamics ; Multilayers ; Stacking faults ; Transition ; Wurtzite ; Zincblende</subject><ispartof>Journal of applied physics, 2017-12, Vol.122 (23)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-a8b2b8f557da1f21911fd1f629855dbd24d7ee5571e6cb39eb431c277b7621753</citedby><cites>FETCH-LOGICAL-c389t-a8b2b8f557da1f21911fd1f629855dbd24d7ee5571e6cb39eb431c277b7621753</cites><orcidid>0000-0003-1929-710X ; 000000031929710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5001339$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1421617$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, X. W.</creatorcontrib><creatorcontrib>Jones, R. E.</creatorcontrib><creatorcontrib>Chu, K.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Polymorphic improvement of Stillinger-Weber potential for InGaN</title><title>Journal of applied physics</title><description>A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds and elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.</description><subject>Alloy systems</subject><subject>Alloying elements</subject><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Diamonds</subject><subject>Elastic limit</subject><subject>Elastic moduli</subject><subject>Elastic properties</subject><subject>Indium gallium nitrides</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Intermolecular forces</subject><subject>MATERIALS SCIENCE</subject><subject>Molecular dynamics</subject><subject>Multilayers</subject><subject>Stacking faults</subject><subject>Transition</subject><subject>Wurtzite</subject><subject>Zincblende</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LwzAYB_AgCs7pwW9Q9KTQmSdZmuQkMnQOhgoqHkObJi6jbWqaDfbt7ejAu6fn8P_xvCF0CXgCOKN3MGEYA6XyCI0AC5lyxvAxGmFMIBWSy1N01nXr3oCgcoTu33y1q31oV04nrm6D35raNDHxNnmPrqpc821C-mUKE5LWxz5yeZVYH5JFM89fztGJzavOXBzqGH0-PX7MntPl63wxe1immgoZ01wUpBCWMV7mYAlIAFuCzYgUjJVFSaYlN6aPwWS6oNIUUwqacF7wjABndIyuhr6-i0512kWjV9o3jdFRwZRABrxH1wPqz_jZmC6qtd-Ept9LEYAMY4nFXt0MSgffdcFY1QZX52GnAKv9ExWowxN7ezvY_cQ8Ot_8D299-IOqLS39BdmHfjI</recordid><startdate>20171221</startdate><enddate>20171221</enddate><creator>Zhou, X. W.</creator><creator>Jones, R. E.</creator><creator>Chu, K.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1929-710X</orcidid><orcidid>https://orcid.org/000000031929710X</orcidid></search><sort><creationdate>20171221</creationdate><title>Polymorphic improvement of Stillinger-Weber potential for InGaN</title><author>Zhou, X. W. ; Jones, R. E. ; Chu, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-a8b2b8f557da1f21911fd1f629855dbd24d7ee5571e6cb39eb431c277b7621753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloy systems</topic><topic>Alloying elements</topic><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Diamonds</topic><topic>Elastic limit</topic><topic>Elastic moduli</topic><topic>Elastic properties</topic><topic>Indium gallium nitrides</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Intermolecular forces</topic><topic>MATERIALS SCIENCE</topic><topic>Molecular dynamics</topic><topic>Multilayers</topic><topic>Stacking faults</topic><topic>Transition</topic><topic>Wurtzite</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, X. W.</creatorcontrib><creatorcontrib>Jones, R. E.</creatorcontrib><creatorcontrib>Chu, K.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, X. W.</au><au>Jones, R. E.</au><au>Chu, K.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymorphic improvement of Stillinger-Weber potential for InGaN</atitle><jtitle>Journal of applied physics</jtitle><date>2017-12-21</date><risdate>2017</risdate><volume>122</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds and elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5001339</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1929-710X</orcidid><orcidid>https://orcid.org/000000031929710X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2017-12, Vol.122 (23) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5001339 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Alloy systems Alloying elements Applied physics Computer simulation Constraining Crystal defects Crystal structure Diamonds Elastic limit Elastic moduli Elastic properties Indium gallium nitrides INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Intermolecular forces MATERIALS SCIENCE Molecular dynamics Multilayers Stacking faults Transition Wurtzite Zincblende |
title | Polymorphic improvement of Stillinger-Weber potential for InGaN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymorphic%20improvement%20of%20Stillinger-Weber%20potential%20for%20InGaN&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zhou,%20X.%20W.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2017-12-21&rft.volume=122&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5001339&rft_dat=%3Cproquest_cross%3E2116009087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116009087&rft_id=info:pmid/&rfr_iscdi=true |