Quantifying transient spreading dynamics on networks

Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits and from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread acr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2018-06, Vol.28 (6), p.063122-063122
Hauptverfasser: Wolter, Justine, Lünsmann, Benedict, Zhang, Xiaozhu, Schröder, Malte, Timme, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 063122
container_issue 6
container_start_page 063122
container_title Chaos (Woodbury, N.Y.)
container_volume 28
creator Wolter, Justine
Lünsmann, Benedict
Zhang, Xiaozhu
Schröder, Malte
Timme, Marc
description Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits and from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread across networks is not yet quantitatively understood. Here, we analyze generic spreading dynamics in deterministic network dynamical systems close to a given operating point. Standard dynamical systems' theory does not explicitly provide measures for arrival times and amplitudes of a transient spreading signal because it focuses on invariant sets, invariant measures, and other quantities less relevant for transient behavior. We here change the perspective and introduce formal expectation values for deterministic dynamics to work out a theory explicitly quantifying when and how strongly a perturbation initiated at one unit of a network impacts any other. The theory provides explicit timing and amplitude information as a function of the relative position of initially perturbed and responding unit as well as depending on the entire network topology.
doi_str_mv 10.1063/1.5000996
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5000996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088308689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-193c338beae3b2d86caa7d3e582e781b5184681405454e70464f28a5a8aa4d3a3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgiqOjC19ACm5U6Jhb29OlDN5gQARdh9M2lYzTdExSZN7elBlduHCVkHz8nPMTcsbojNFc3LBZRikty3yPHDEKZVrkwPfHeyZTFv8m5Nj7ZTSMi-yQTHi0VFJ5ROTLgDaYdmPsexIcWm-0DYlfO43N-NZsLHam9klvE6vDV-8-_Ak5aHHl9enunJK3-7vX-WO6eH54mt8u0lpICCkrRS0EVBq1qHgDeY1YNEJnwHUBrMoYyByYjFNmUhdU5rLlgBkComwEiim53OauXf85aB9UZ3ytVyu0uh-84nH5gktelJFe_KHLfnA2ThcVgKCQw6iutqp2vfdOt2rtTIduoxhVY5WKqV2V0Z7vEoeq082v_Okugust8LUJGExv_0n7BgHqeU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088308689</pqid></control><display><type>article</type><title>Quantifying transient spreading dynamics on networks</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wolter, Justine ; Lünsmann, Benedict ; Zhang, Xiaozhu ; Schröder, Malte ; Timme, Marc</creator><creatorcontrib>Wolter, Justine ; Lünsmann, Benedict ; Zhang, Xiaozhu ; Schröder, Malte ; Timme, Marc</creatorcontrib><description>Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits and from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread across networks is not yet quantitatively understood. Here, we analyze generic spreading dynamics in deterministic network dynamical systems close to a given operating point. Standard dynamical systems' theory does not explicitly provide measures for arrival times and amplitudes of a transient spreading signal because it focuses on invariant sets, invariant measures, and other quantities less relevant for transient behavior. We here change the perspective and introduce formal expectation values for deterministic dynamics to work out a theory explicitly quantifying when and how strongly a perturbation initiated at one unit of a network impacts any other. The theory provides explicit timing and amplitude information as a function of the relative position of initially perturbed and responding unit as well as depending on the entire network topology.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5000996</identifier><identifier>PMID: 29960404</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Amplitudes ; Dynamical systems ; Dynamics ; Epidemics ; Information dissemination ; Invariants ; Networks</subject><ispartof>Chaos (Woodbury, N.Y.), 2018-06, Vol.28 (6), p.063122-063122</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-193c338beae3b2d86caa7d3e582e781b5184681405454e70464f28a5a8aa4d3a3</citedby><cites>FETCH-LOGICAL-c348t-193c338beae3b2d86caa7d3e582e781b5184681405454e70464f28a5a8aa4d3a3</cites><orcidid>0000-0001-8756-9918 ; 0000-0002-0580-0598 ; 0000000205800598 ; 0000000187569918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29960404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolter, Justine</creatorcontrib><creatorcontrib>Lünsmann, Benedict</creatorcontrib><creatorcontrib>Zhang, Xiaozhu</creatorcontrib><creatorcontrib>Schröder, Malte</creatorcontrib><creatorcontrib>Timme, Marc</creatorcontrib><title>Quantifying transient spreading dynamics on networks</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits and from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread across networks is not yet quantitatively understood. Here, we analyze generic spreading dynamics in deterministic network dynamical systems close to a given operating point. Standard dynamical systems' theory does not explicitly provide measures for arrival times and amplitudes of a transient spreading signal because it focuses on invariant sets, invariant measures, and other quantities less relevant for transient behavior. We here change the perspective and introduce formal expectation values for deterministic dynamics to work out a theory explicitly quantifying when and how strongly a perturbation initiated at one unit of a network impacts any other. The theory provides explicit timing and amplitude information as a function of the relative position of initially perturbed and responding unit as well as depending on the entire network topology.</description><subject>Amplitudes</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Epidemics</subject><subject>Information dissemination</subject><subject>Invariants</subject><subject>Networks</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgiqOjC19ACm5U6Jhb29OlDN5gQARdh9M2lYzTdExSZN7elBlduHCVkHz8nPMTcsbojNFc3LBZRikty3yPHDEKZVrkwPfHeyZTFv8m5Nj7ZTSMi-yQTHi0VFJ5ROTLgDaYdmPsexIcWm-0DYlfO43N-NZsLHam9klvE6vDV-8-_Ak5aHHl9enunJK3-7vX-WO6eH54mt8u0lpICCkrRS0EVBq1qHgDeY1YNEJnwHUBrMoYyByYjFNmUhdU5rLlgBkComwEiim53OauXf85aB9UZ3ytVyu0uh-84nH5gktelJFe_KHLfnA2ThcVgKCQw6iutqp2vfdOt2rtTIduoxhVY5WKqV2V0Z7vEoeq082v_Okugust8LUJGExv_0n7BgHqeU0</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Wolter, Justine</creator><creator>Lünsmann, Benedict</creator><creator>Zhang, Xiaozhu</creator><creator>Schröder, Malte</creator><creator>Timme, Marc</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8756-9918</orcidid><orcidid>https://orcid.org/0000-0002-0580-0598</orcidid><orcidid>https://orcid.org/0000000205800598</orcidid><orcidid>https://orcid.org/0000000187569918</orcidid></search><sort><creationdate>201806</creationdate><title>Quantifying transient spreading dynamics on networks</title><author>Wolter, Justine ; Lünsmann, Benedict ; Zhang, Xiaozhu ; Schröder, Malte ; Timme, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-193c338beae3b2d86caa7d3e582e781b5184681405454e70464f28a5a8aa4d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplitudes</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Epidemics</topic><topic>Information dissemination</topic><topic>Invariants</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolter, Justine</creatorcontrib><creatorcontrib>Lünsmann, Benedict</creatorcontrib><creatorcontrib>Zhang, Xiaozhu</creatorcontrib><creatorcontrib>Schröder, Malte</creatorcontrib><creatorcontrib>Timme, Marc</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolter, Justine</au><au>Lünsmann, Benedict</au><au>Zhang, Xiaozhu</au><au>Schröder, Malte</au><au>Timme, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying transient spreading dynamics on networks</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2018-06</date><risdate>2018</risdate><volume>28</volume><issue>6</issue><spage>063122</spage><epage>063122</epage><pages>063122-063122</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits and from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread across networks is not yet quantitatively understood. Here, we analyze generic spreading dynamics in deterministic network dynamical systems close to a given operating point. Standard dynamical systems' theory does not explicitly provide measures for arrival times and amplitudes of a transient spreading signal because it focuses on invariant sets, invariant measures, and other quantities less relevant for transient behavior. We here change the perspective and introduce formal expectation values for deterministic dynamics to work out a theory explicitly quantifying when and how strongly a perturbation initiated at one unit of a network impacts any other. The theory provides explicit timing and amplitude information as a function of the relative position of initially perturbed and responding unit as well as depending on the entire network topology.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29960404</pmid><doi>10.1063/1.5000996</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8756-9918</orcidid><orcidid>https://orcid.org/0000-0002-0580-0598</orcidid><orcidid>https://orcid.org/0000000205800598</orcidid><orcidid>https://orcid.org/0000000187569918</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2018-06, Vol.28 (6), p.063122-063122
issn 1054-1500
1089-7682
language eng
recordid cdi_crossref_primary_10_1063_1_5000996
source AIP Journals Complete; Alma/SFX Local Collection
subjects Amplitudes
Dynamical systems
Dynamics
Epidemics
Information dissemination
Invariants
Networks
title Quantifying transient spreading dynamics on networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T17%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20transient%20spreading%20dynamics%20on%20networks&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wolter,%20Justine&rft.date=2018-06&rft.volume=28&rft.issue=6&rft.spage=063122&rft.epage=063122&rft.pages=063122-063122&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5000996&rft_dat=%3Cproquest_cross%3E2088308689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088308689&rft_id=info:pmid/29960404&rfr_iscdi=true