Quantifying transient spreading dynamics on networks
Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits and from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread acr...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2018-06, Vol.28 (6), p.063122-063122 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 063122 |
---|---|
container_issue | 6 |
container_start_page | 063122 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 28 |
creator | Wolter, Justine Lünsmann, Benedict Zhang, Xiaozhu Schröder, Malte Timme, Marc |
description | Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits and from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread across networks is not yet quantitatively understood. Here, we analyze generic spreading dynamics in deterministic network dynamical systems close to a given operating point. Standard dynamical systems' theory does not explicitly provide measures for arrival times and amplitudes of a transient spreading signal because it focuses on invariant sets, invariant measures, and other quantities less relevant for transient behavior. We here change the perspective and introduce formal expectation values for deterministic dynamics to work out a theory explicitly quantifying when and how strongly a perturbation initiated at one unit of a network impacts any other. The theory provides explicit timing and amplitude information as a function of the relative position of initially perturbed and responding unit as well as depending on the entire network topology. |
doi_str_mv | 10.1063/1.5000996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5000996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088308689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-193c338beae3b2d86caa7d3e582e781b5184681405454e70464f28a5a8aa4d3a3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgiqOjC19ACm5U6Jhb29OlDN5gQARdh9M2lYzTdExSZN7elBlduHCVkHz8nPMTcsbojNFc3LBZRikty3yPHDEKZVrkwPfHeyZTFv8m5Nj7ZTSMi-yQTHi0VFJ5ROTLgDaYdmPsexIcWm-0DYlfO43N-NZsLHam9klvE6vDV-8-_Ak5aHHl9enunJK3-7vX-WO6eH54mt8u0lpICCkrRS0EVBq1qHgDeY1YNEJnwHUBrMoYyByYjFNmUhdU5rLlgBkComwEiim53OauXf85aB9UZ3ytVyu0uh-84nH5gktelJFe_KHLfnA2ThcVgKCQw6iutqp2vfdOt2rtTIduoxhVY5WKqV2V0Z7vEoeq082v_Okugust8LUJGExv_0n7BgHqeU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088308689</pqid></control><display><type>article</type><title>Quantifying transient spreading dynamics on networks</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wolter, Justine ; Lünsmann, Benedict ; Zhang, Xiaozhu ; Schröder, Malte ; Timme, Marc</creator><creatorcontrib>Wolter, Justine ; Lünsmann, Benedict ; Zhang, Xiaozhu ; Schröder, Malte ; Timme, Marc</creatorcontrib><description>Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits and from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread across networks is not yet quantitatively understood. Here, we analyze generic spreading dynamics in deterministic network dynamical systems close to a given operating point. Standard dynamical systems' theory does not explicitly provide measures for arrival times and amplitudes of a transient spreading signal because it focuses on invariant sets, invariant measures, and other quantities less relevant for transient behavior. We here change the perspective and introduce formal expectation values for deterministic dynamics to work out a theory explicitly quantifying when and how strongly a perturbation initiated at one unit of a network impacts any other. The theory provides explicit timing and amplitude information as a function of the relative position of initially perturbed and responding unit as well as depending on the entire network topology.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5000996</identifier><identifier>PMID: 29960404</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Amplitudes ; Dynamical systems ; Dynamics ; Epidemics ; Information dissemination ; Invariants ; Networks</subject><ispartof>Chaos (Woodbury, N.Y.), 2018-06, Vol.28 (6), p.063122-063122</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-193c338beae3b2d86caa7d3e582e781b5184681405454e70464f28a5a8aa4d3a3</citedby><cites>FETCH-LOGICAL-c348t-193c338beae3b2d86caa7d3e582e781b5184681405454e70464f28a5a8aa4d3a3</cites><orcidid>0000-0001-8756-9918 ; 0000-0002-0580-0598 ; 0000000205800598 ; 0000000187569918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29960404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolter, Justine</creatorcontrib><creatorcontrib>Lünsmann, Benedict</creatorcontrib><creatorcontrib>Zhang, Xiaozhu</creatorcontrib><creatorcontrib>Schröder, Malte</creatorcontrib><creatorcontrib>Timme, Marc</creatorcontrib><title>Quantifying transient spreading dynamics on networks</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits and from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread across networks is not yet quantitatively understood. Here, we analyze generic spreading dynamics in deterministic network dynamical systems close to a given operating point. Standard dynamical systems' theory does not explicitly provide measures for arrival times and amplitudes of a transient spreading signal because it focuses on invariant sets, invariant measures, and other quantities less relevant for transient behavior. We here change the perspective and introduce formal expectation values for deterministic dynamics to work out a theory explicitly quantifying when and how strongly a perturbation initiated at one unit of a network impacts any other. The theory provides explicit timing and amplitude information as a function of the relative position of initially perturbed and responding unit as well as depending on the entire network topology.</description><subject>Amplitudes</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Epidemics</subject><subject>Information dissemination</subject><subject>Invariants</subject><subject>Networks</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgiqOjC19ACm5U6Jhb29OlDN5gQARdh9M2lYzTdExSZN7elBlduHCVkHz8nPMTcsbojNFc3LBZRikty3yPHDEKZVrkwPfHeyZTFv8m5Nj7ZTSMi-yQTHi0VFJ5ROTLgDaYdmPsexIcWm-0DYlfO43N-NZsLHam9klvE6vDV-8-_Ak5aHHl9enunJK3-7vX-WO6eH54mt8u0lpICCkrRS0EVBq1qHgDeY1YNEJnwHUBrMoYyByYjFNmUhdU5rLlgBkComwEiim53OauXf85aB9UZ3ytVyu0uh-84nH5gktelJFe_KHLfnA2ThcVgKCQw6iutqp2vfdOt2rtTIduoxhVY5WKqV2V0Z7vEoeq082v_Okugust8LUJGExv_0n7BgHqeU0</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Wolter, Justine</creator><creator>Lünsmann, Benedict</creator><creator>Zhang, Xiaozhu</creator><creator>Schröder, Malte</creator><creator>Timme, Marc</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8756-9918</orcidid><orcidid>https://orcid.org/0000-0002-0580-0598</orcidid><orcidid>https://orcid.org/0000000205800598</orcidid><orcidid>https://orcid.org/0000000187569918</orcidid></search><sort><creationdate>201806</creationdate><title>Quantifying transient spreading dynamics on networks</title><author>Wolter, Justine ; Lünsmann, Benedict ; Zhang, Xiaozhu ; Schröder, Malte ; Timme, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-193c338beae3b2d86caa7d3e582e781b5184681405454e70464f28a5a8aa4d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplitudes</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Epidemics</topic><topic>Information dissemination</topic><topic>Invariants</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolter, Justine</creatorcontrib><creatorcontrib>Lünsmann, Benedict</creatorcontrib><creatorcontrib>Zhang, Xiaozhu</creatorcontrib><creatorcontrib>Schröder, Malte</creatorcontrib><creatorcontrib>Timme, Marc</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolter, Justine</au><au>Lünsmann, Benedict</au><au>Zhang, Xiaozhu</au><au>Schröder, Malte</au><au>Timme, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying transient spreading dynamics on networks</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2018-06</date><risdate>2018</risdate><volume>28</volume><issue>6</issue><spage>063122</spage><epage>063122</epage><pages>063122-063122</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits and from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread across networks is not yet quantitatively understood. Here, we analyze generic spreading dynamics in deterministic network dynamical systems close to a given operating point. Standard dynamical systems' theory does not explicitly provide measures for arrival times and amplitudes of a transient spreading signal because it focuses on invariant sets, invariant measures, and other quantities less relevant for transient behavior. We here change the perspective and introduce formal expectation values for deterministic dynamics to work out a theory explicitly quantifying when and how strongly a perturbation initiated at one unit of a network impacts any other. The theory provides explicit timing and amplitude information as a function of the relative position of initially perturbed and responding unit as well as depending on the entire network topology.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29960404</pmid><doi>10.1063/1.5000996</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8756-9918</orcidid><orcidid>https://orcid.org/0000-0002-0580-0598</orcidid><orcidid>https://orcid.org/0000000205800598</orcidid><orcidid>https://orcid.org/0000000187569918</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2018-06, Vol.28 (6), p.063122-063122 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5000996 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Amplitudes Dynamical systems Dynamics Epidemics Information dissemination Invariants Networks |
title | Quantifying transient spreading dynamics on networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T17%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20transient%20spreading%20dynamics%20on%20networks&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wolter,%20Justine&rft.date=2018-06&rft.volume=28&rft.issue=6&rft.spage=063122&rft.epage=063122&rft.pages=063122-063122&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5000996&rft_dat=%3Cproquest_cross%3E2088308689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088308689&rft_id=info:pmid/29960404&rfr_iscdi=true |