Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

Hydrodynamic instability growth of the capsule support membranes (or “tents”) and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF) [Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In NIF implosions, the capsules are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2017-10, Vol.24 (10)
Hauptverfasser: Martinez, D. A., Smalyuk, V. A., MacPhee, A. G., Milovich, J., Casey, D. T., Weber, C. R., Robey, H. F., Chen, K.-C., Clark, D. S., Crippen, J., Farrell, M., Felker, S., Field, J. E., Haan, S. W., Hammel, B. A., Hamza, A. V., Stadermann, M., Hsing, W. W., Kroll, J. J., Landen, O. L., Nikroo, A., Pickworth, L., Rice, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrodynamic instability growth of the capsule support membranes (or “tents”) and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF) [Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new “sub-scale” version of the existing x-ray radiography platform was developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ∼2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ∼3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. The effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4995568