Capillary spreading of contact line over a sinking sphere
The contact line dynamics over a sinking solid sphere are investigated in comparison to classical spreading theories. Experimentally, high-speed imaging systems with optical light or x-ray illumination are employed to accurately measure the spreading motion and dynamic contact angle of the contact l...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2017-09, Vol.111 (13) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 111 |
creator | Kim, Seong Jin Fezzaa, Kamel An, Jim Sun, Tao Jung, Sunghwan |
description | The contact line dynamics over a sinking solid sphere are investigated in comparison to classical spreading theories. Experimentally, high-speed imaging systems with optical light or x-ray illumination are employed to accurately measure the spreading motion and dynamic contact angle of the contact line. Millimetric spheres are controlled to descend with a constant speed ranging from 7.3 × 10–5 to 0.79 m/s. We observed three different spreading stages over a sinking sphere, which depends on the contact line velocity and contact angle. These stages consistently showed the characteristics of capillarity-driven spreading as the contact line spreads faster with a higher contact angle. The contact line velocity is observed to follow a classical capillary-viscous model at a high Ohnesorge number (>0.02). For the cases with a relatively low Ohnesorge number ( |
doi_str_mv | 10.1063/1.4991361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4991361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116066511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-b707d1cb68da3f23cd5dbadaca81f60af4bf56cb5ab8483b27887bf6ae19bcd23</originalsourceid><addsrcrecordid>eNp90EtLxDAQAOAgCq6rB_9B0ZNC10zTpulRFl-w4EXPIU83a21qkl3w39vSRQ-Cp2GYj3khdA54AZiSG1iUTQOEwgGaAa7rnACwQzTDGJOcNhUco5MYN0NaFYTMULMUvWtbEb6y2AcjtOveMm8z5bskVMpa15nM70zIRBZd9z6WY782wZyiIyvaaM72cY5e7-9elo_56vnhaXm7yhVhTcpljWsNSlKmBbEFUbrSUmihBANLsbCltBVVshKSlYzIomaslpYKA41UuiBzdDH19TE5HpVLRq2H9TqjEocSAOoRXU6oD_5za2LiG78N3bAXLwAoprQCGNTVpFTwMQZjeR_cx3A7B8zH93Hg-_cN9nqy40SRnO9-8M6HX8h7bf_Dfzt_A6oSfXo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116066511</pqid></control><display><type>article</type><title>Capillary spreading of contact line over a sinking sphere</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Seong Jin ; Fezzaa, Kamel ; An, Jim ; Sun, Tao ; Jung, Sunghwan</creator><creatorcontrib>Kim, Seong Jin ; Fezzaa, Kamel ; An, Jim ; Sun, Tao ; Jung, Sunghwan ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The contact line dynamics over a sinking solid sphere are investigated in comparison to classical spreading theories. Experimentally, high-speed imaging systems with optical light or x-ray illumination are employed to accurately measure the spreading motion and dynamic contact angle of the contact line. Millimetric spheres are controlled to descend with a constant speed ranging from 7.3 × 10–5 to 0.79 m/s. We observed three different spreading stages over a sinking sphere, which depends on the contact line velocity and contact angle. These stages consistently showed the characteristics of capillarity-driven spreading as the contact line spreads faster with a higher contact angle. The contact line velocity is observed to follow a classical capillary-viscous model at a high Ohnesorge number (>0.02). For the cases with a relatively low Ohnesorge number (<0.02), the contact line velocity is significantly lower than the speed predicted by the capillary-viscous balance. This indicates the existence of an additional opposing force (inertia) for a decreasing Ohnesorge number. The capillary-inertial balance is only observed at the very beginning of the capillary rise, in which the maximum velocity is independent of the sphere's sinking speed. Additionally, we observed the linear relationship between the contact line velocity and the sphere sinking speed during the second stage, which represents capillary adjustment by the dynamic contact angle.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4991361</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Capillarity ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Contact angle ; Light ; Spreading ; Velocity</subject><ispartof>Applied physics letters, 2017-09, Vol.111 (13)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-b707d1cb68da3f23cd5dbadaca81f60af4bf56cb5ab8483b27887bf6ae19bcd23</citedby><cites>FETCH-LOGICAL-c389t-b707d1cb68da3f23cd5dbadaca81f60af4bf56cb5ab8483b27887bf6ae19bcd23</cites><orcidid>0000-0002-9405-2375 ; 0000000294052375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4991361$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1411172$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Seong Jin</creatorcontrib><creatorcontrib>Fezzaa, Kamel</creatorcontrib><creatorcontrib>An, Jim</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Jung, Sunghwan</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Capillary spreading of contact line over a sinking sphere</title><title>Applied physics letters</title><description>The contact line dynamics over a sinking solid sphere are investigated in comparison to classical spreading theories. Experimentally, high-speed imaging systems with optical light or x-ray illumination are employed to accurately measure the spreading motion and dynamic contact angle of the contact line. Millimetric spheres are controlled to descend with a constant speed ranging from 7.3 × 10–5 to 0.79 m/s. We observed three different spreading stages over a sinking sphere, which depends on the contact line velocity and contact angle. These stages consistently showed the characteristics of capillarity-driven spreading as the contact line spreads faster with a higher contact angle. The contact line velocity is observed to follow a classical capillary-viscous model at a high Ohnesorge number (>0.02). For the cases with a relatively low Ohnesorge number (<0.02), the contact line velocity is significantly lower than the speed predicted by the capillary-viscous balance. This indicates the existence of an additional opposing force (inertia) for a decreasing Ohnesorge number. The capillary-inertial balance is only observed at the very beginning of the capillary rise, in which the maximum velocity is independent of the sphere's sinking speed. Additionally, we observed the linear relationship between the contact line velocity and the sphere sinking speed during the second stage, which represents capillary adjustment by the dynamic contact angle.</description><subject>Applied physics</subject><subject>Capillarity</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Contact angle</subject><subject>Light</subject><subject>Spreading</subject><subject>Velocity</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAQAOAgCq6rB_9B0ZNC10zTpulRFl-w4EXPIU83a21qkl3w39vSRQ-Cp2GYj3khdA54AZiSG1iUTQOEwgGaAa7rnACwQzTDGJOcNhUco5MYN0NaFYTMULMUvWtbEb6y2AcjtOveMm8z5bskVMpa15nM70zIRBZd9z6WY782wZyiIyvaaM72cY5e7-9elo_56vnhaXm7yhVhTcpljWsNSlKmBbEFUbrSUmihBANLsbCltBVVshKSlYzIomaslpYKA41UuiBzdDH19TE5HpVLRq2H9TqjEocSAOoRXU6oD_5za2LiG78N3bAXLwAoprQCGNTVpFTwMQZjeR_cx3A7B8zH93Hg-_cN9nqy40SRnO9-8M6HX8h7bf_Dfzt_A6oSfXo</recordid><startdate>20170925</startdate><enddate>20170925</enddate><creator>Kim, Seong Jin</creator><creator>Fezzaa, Kamel</creator><creator>An, Jim</creator><creator>Sun, Tao</creator><creator>Jung, Sunghwan</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9405-2375</orcidid><orcidid>https://orcid.org/0000000294052375</orcidid></search><sort><creationdate>20170925</creationdate><title>Capillary spreading of contact line over a sinking sphere</title><author>Kim, Seong Jin ; Fezzaa, Kamel ; An, Jim ; Sun, Tao ; Jung, Sunghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-b707d1cb68da3f23cd5dbadaca81f60af4bf56cb5ab8483b27887bf6ae19bcd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Capillarity</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Contact angle</topic><topic>Light</topic><topic>Spreading</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seong Jin</creatorcontrib><creatorcontrib>Fezzaa, Kamel</creatorcontrib><creatorcontrib>An, Jim</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Jung, Sunghwan</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seong Jin</au><au>Fezzaa, Kamel</au><au>An, Jim</au><au>Sun, Tao</au><au>Jung, Sunghwan</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillary spreading of contact line over a sinking sphere</atitle><jtitle>Applied physics letters</jtitle><date>2017-09-25</date><risdate>2017</risdate><volume>111</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The contact line dynamics over a sinking solid sphere are investigated in comparison to classical spreading theories. Experimentally, high-speed imaging systems with optical light or x-ray illumination are employed to accurately measure the spreading motion and dynamic contact angle of the contact line. Millimetric spheres are controlled to descend with a constant speed ranging from 7.3 × 10–5 to 0.79 m/s. We observed three different spreading stages over a sinking sphere, which depends on the contact line velocity and contact angle. These stages consistently showed the characteristics of capillarity-driven spreading as the contact line spreads faster with a higher contact angle. The contact line velocity is observed to follow a classical capillary-viscous model at a high Ohnesorge number (>0.02). For the cases with a relatively low Ohnesorge number (<0.02), the contact line velocity is significantly lower than the speed predicted by the capillary-viscous balance. This indicates the existence of an additional opposing force (inertia) for a decreasing Ohnesorge number. The capillary-inertial balance is only observed at the very beginning of the capillary rise, in which the maximum velocity is independent of the sphere's sinking speed. Additionally, we observed the linear relationship between the contact line velocity and the sphere sinking speed during the second stage, which represents capillary adjustment by the dynamic contact angle.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4991361</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9405-2375</orcidid><orcidid>https://orcid.org/0000000294052375</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2017-09, Vol.111 (13) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4991361 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Capillarity CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Contact angle Light Spreading Velocity |
title | Capillary spreading of contact line over a sinking sphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillary%20spreading%20of%20contact%20line%20over%20a%20sinking%20sphere&rft.jtitle=Applied%20physics%20letters&rft.au=Kim,%20Seong%20Jin&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-09-25&rft.volume=111&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4991361&rft_dat=%3Cproquest_cross%3E2116066511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116066511&rft_id=info:pmid/&rfr_iscdi=true |