Ionization of pyridine: Interplay of orbital relaxation and electron correlation

The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green’s function and the outer-valence Green’s function method. The results were used to interpret angle resolved photoelectron spectra re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2017-06, Vol.146 (24), p.244307-244307
Hauptverfasser: Trofimov, A. B., Holland, D. M. P., Powis, I., Menzies, R. C., Potts, A. W., Karlsson, L., Gromov, E. V., Badsyuk, I. L., Schirmer, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244307
container_issue 24
container_start_page 244307
container_title The Journal of chemical physics
container_volume 146
creator Trofimov, A. B.
Holland, D. M. P.
Powis, I.
Menzies, R. C.
Potts, A. W.
Karlsson, L.
Gromov, E. V.
Badsyuk, I. L.
Schirmer, J.
description The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green’s function and the outer-valence Green’s function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17–120 eV. The lowest four states of the pyridine radical cation, namely, 2A2( 1 a 2 − 1 ), 2A1( 7 a 1 − 1 ), 2B1( 2 b 1 − 1 ), and 2B2( 5 b 2 − 1 ), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a1(nσ)−1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach.
doi_str_mv 10.1063/1.4986405
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4986405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116117247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-f6e1923a1e938bacf557914c645c618a0524e14565237a73a1d8ffd2da3743e33</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhwBdAkbhQRNoZ_4vdW1VoWakSHApXy-s4yFU2Dnaisv30ONqlhx44WeP56Wnee4S8RThFkOwMT7lWkoN4RlYISteN1PCcrAAo1lqCPCKvcr4DAGwof0mOqJJSgYAV-b6OQ3iwU4hDFbtq3KXQhsGfV-th8mns7W75jmkTJttXyff2zx62Q1v53rsplcHFtKyWxWvyorN99m8O7zH5cfXl9vJrffPten15cVM7TmGqO-lRU2bRa6Y21nVCNBq5k1w4icqCoNwjF1JQ1timgK3qupa2ljWcecaOyae9br7347wxYwpbm3Ym2mA-h58XJqZfZp4NY1A8F_zDHh9T_D37PJltyM73vR18nLNBjUIIpbQs6Psn6F2c01DMGIooccmwKdTJnnIp5px893gBgllaMWgOrRT23UFx3mx9-0j-q6EAHw9mXMl5ifE_an8B6BmTKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116117247</pqid></control><display><type>article</type><title>Ionization of pyridine: Interplay of orbital relaxation and electron correlation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Trofimov, A. B. ; Holland, D. M. P. ; Powis, I. ; Menzies, R. C. ; Potts, A. W. ; Karlsson, L. ; Gromov, E. V. ; Badsyuk, I. L. ; Schirmer, J.</creator><creatorcontrib>Trofimov, A. B. ; Holland, D. M. P. ; Powis, I. ; Menzies, R. C. ; Potts, A. W. ; Karlsson, L. ; Gromov, E. V. ; Badsyuk, I. L. ; Schirmer, J.</creatorcontrib><description>The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green’s function and the outer-valence Green’s function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17–120 eV. The lowest four states of the pyridine radical cation, namely, 2A2( 1 a 2 − 1 ), 2A1( 7 a 1 − 1 ), 2B1( 2 b 1 − 1 ), and 2B2( 5 b 2 − 1 ), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a1(nσ)−1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4986405</identifier><identifier>PMID: 28668050</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anisotropy ; Cations ; Electron density ; Electronic structure ; Ionization ; Mathematical analysis ; Molecular orbitals ; Parameters ; Perturbation theory ; Photoionization ; Physics ; Synchrotron radiation ; Theory</subject><ispartof>The Journal of chemical physics, 2017-06, Vol.146 (24), p.244307-244307</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-f6e1923a1e938bacf557914c645c618a0524e14565237a73a1d8ffd2da3743e33</citedby><cites>FETCH-LOGICAL-c420t-f6e1923a1e938bacf557914c645c618a0524e14565237a73a1d8ffd2da3743e33</cites><orcidid>0000-0002-7941-9079 ; 0000-0002-9002-1643 ; 0000000290021643 ; 0000000279419079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4986405$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28668050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330724$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Trofimov, A. B.</creatorcontrib><creatorcontrib>Holland, D. M. P.</creatorcontrib><creatorcontrib>Powis, I.</creatorcontrib><creatorcontrib>Menzies, R. C.</creatorcontrib><creatorcontrib>Potts, A. W.</creatorcontrib><creatorcontrib>Karlsson, L.</creatorcontrib><creatorcontrib>Gromov, E. V.</creatorcontrib><creatorcontrib>Badsyuk, I. L.</creatorcontrib><creatorcontrib>Schirmer, J.</creatorcontrib><title>Ionization of pyridine: Interplay of orbital relaxation and electron correlation</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green’s function and the outer-valence Green’s function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17–120 eV. The lowest four states of the pyridine radical cation, namely, 2A2( 1 a 2 − 1 ), 2A1( 7 a 1 − 1 ), 2B1( 2 b 1 − 1 ), and 2B2( 5 b 2 − 1 ), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a1(nσ)−1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach.</description><subject>Anisotropy</subject><subject>Cations</subject><subject>Electron density</subject><subject>Electronic structure</subject><subject>Ionization</subject><subject>Mathematical analysis</subject><subject>Molecular orbitals</subject><subject>Parameters</subject><subject>Perturbation theory</subject><subject>Photoionization</subject><subject>Physics</subject><subject>Synchrotron radiation</subject><subject>Theory</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EokvhwBdAkbhQRNoZ_4vdW1VoWakSHApXy-s4yFU2Dnaisv30ONqlhx44WeP56Wnee4S8RThFkOwMT7lWkoN4RlYISteN1PCcrAAo1lqCPCKvcr4DAGwof0mOqJJSgYAV-b6OQ3iwU4hDFbtq3KXQhsGfV-th8mns7W75jmkTJttXyff2zx62Q1v53rsplcHFtKyWxWvyorN99m8O7zH5cfXl9vJrffPten15cVM7TmGqO-lRU2bRa6Y21nVCNBq5k1w4icqCoNwjF1JQ1timgK3qupa2ljWcecaOyae9br7347wxYwpbm3Ym2mA-h58XJqZfZp4NY1A8F_zDHh9T_D37PJltyM73vR18nLNBjUIIpbQs6Psn6F2c01DMGIooccmwKdTJnnIp5px893gBgllaMWgOrRT23UFx3mx9-0j-q6EAHw9mXMl5ifE_an8B6BmTKw</recordid><startdate>20170628</startdate><enddate>20170628</enddate><creator>Trofimov, A. B.</creator><creator>Holland, D. M. P.</creator><creator>Powis, I.</creator><creator>Menzies, R. C.</creator><creator>Potts, A. W.</creator><creator>Karlsson, L.</creator><creator>Gromov, E. V.</creator><creator>Badsyuk, I. L.</creator><creator>Schirmer, J.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-7941-9079</orcidid><orcidid>https://orcid.org/0000-0002-9002-1643</orcidid><orcidid>https://orcid.org/0000000290021643</orcidid><orcidid>https://orcid.org/0000000279419079</orcidid></search><sort><creationdate>20170628</creationdate><title>Ionization of pyridine: Interplay of orbital relaxation and electron correlation</title><author>Trofimov, A. B. ; Holland, D. M. P. ; Powis, I. ; Menzies, R. C. ; Potts, A. W. ; Karlsson, L. ; Gromov, E. V. ; Badsyuk, I. L. ; Schirmer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-f6e1923a1e938bacf557914c645c618a0524e14565237a73a1d8ffd2da3743e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Cations</topic><topic>Electron density</topic><topic>Electronic structure</topic><topic>Ionization</topic><topic>Mathematical analysis</topic><topic>Molecular orbitals</topic><topic>Parameters</topic><topic>Perturbation theory</topic><topic>Photoionization</topic><topic>Physics</topic><topic>Synchrotron radiation</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trofimov, A. B.</creatorcontrib><creatorcontrib>Holland, D. M. P.</creatorcontrib><creatorcontrib>Powis, I.</creatorcontrib><creatorcontrib>Menzies, R. C.</creatorcontrib><creatorcontrib>Potts, A. W.</creatorcontrib><creatorcontrib>Karlsson, L.</creatorcontrib><creatorcontrib>Gromov, E. V.</creatorcontrib><creatorcontrib>Badsyuk, I. L.</creatorcontrib><creatorcontrib>Schirmer, J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trofimov, A. B.</au><au>Holland, D. M. P.</au><au>Powis, I.</au><au>Menzies, R. C.</au><au>Potts, A. W.</au><au>Karlsson, L.</au><au>Gromov, E. V.</au><au>Badsyuk, I. L.</au><au>Schirmer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionization of pyridine: Interplay of orbital relaxation and electron correlation</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2017-06-28</date><risdate>2017</risdate><volume>146</volume><issue>24</issue><spage>244307</spage><epage>244307</epage><pages>244307-244307</pages><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green’s function and the outer-valence Green’s function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17–120 eV. The lowest four states of the pyridine radical cation, namely, 2A2( 1 a 2 − 1 ), 2A1( 7 a 1 − 1 ), 2B1( 2 b 1 − 1 ), and 2B2( 5 b 2 − 1 ), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a1(nσ)−1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>28668050</pmid><doi>10.1063/1.4986405</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7941-9079</orcidid><orcidid>https://orcid.org/0000-0002-9002-1643</orcidid><orcidid>https://orcid.org/0000000290021643</orcidid><orcidid>https://orcid.org/0000000279419079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2017-06, Vol.146 (24), p.244307-244307
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_4986405
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anisotropy
Cations
Electron density
Electronic structure
Ionization
Mathematical analysis
Molecular orbitals
Parameters
Perturbation theory
Photoionization
Physics
Synchrotron radiation
Theory
title Ionization of pyridine: Interplay of orbital relaxation and electron correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionization%20of%20pyridine:%20Interplay%20of%20orbital%20relaxation%20and%20electron%20correlation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Trofimov,%20A.%20B.&rft.date=2017-06-28&rft.volume=146&rft.issue=24&rft.spage=244307&rft.epage=244307&rft.pages=244307-244307&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4986405&rft_dat=%3Cproquest_cross%3E2116117247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116117247&rft_id=info:pmid/28668050&rfr_iscdi=true