Picosecond Fresnel transmission electron microscopy

We report the demonstration of picosecond Fresnel imaging with an ultrafast transmission electron microscope (UEM). By operating with a low instrument repetition rate (5 kHz) and without objective-lens excitation, the picosecond demagnetization of an FePt film, via in situ, femtosecond laser excitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-05, Vol.110 (22)
Hauptverfasser: Schliep, Karl B., Quarterman, P., Wang, Jian-Ping, Flannigan, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Applied physics letters
container_volume 110
creator Schliep, Karl B.
Quarterman, P.
Wang, Jian-Ping
Flannigan, David J.
description We report the demonstration of picosecond Fresnel imaging with an ultrafast transmission electron microscope (UEM). By operating with a low instrument repetition rate (5 kHz) and without objective-lens excitation, the picosecond demagnetization of an FePt film, via in situ, femtosecond laser excitation, is directly imaged. The dynamics are quantified and monitored as a time-dependent change in the degree of electron coherence within the magnetic domain walls. The relative coherence of conventional (thermionic) Fresnel transmission electron microscopy is also directly compared to that of Fresnel UEM through the domain-wall size. Further, the robustness and reversibility of the domain-wall dynamics are illustrated by repeating the picosecond image scans at defocus values having the same magnitude but different signs (e.g., +25 mm vs. −25 mm). Control experiments and approaches to identifying and isolating systematic errors and sources of artifacts are also described. This work, and continued future developments also described here, opens the way to direct correlation of transient structure, morphology, and magnetic dynamics in magnetic thin films and spintronic devices.
doi_str_mv 10.1063/1.4984586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4984586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124495808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-81139dbbd83c55931cc9ad3f21b3a7a0d49e5b20c527c511c21780854a2175f03</originalsourceid><addsrcrecordid>eNqd0E9LwzAUAPAgCtbpwW9Q8KTQmZfXrMlRhlNhoAc9h_Q1hY6tqUkn7Nub0YF3T-89-PH-MXYLfA58gY8wL7UqpVqcsQx4VRUIoM5ZxjnHYqElXLKrGDeplAIxY_jRkY-OfN_kq-Bi77b5GGwfd12Mne9zt3U0hpTsOgo-kh8O1-yitdvobk5xxr5Wz5_L12L9_vK2fFoXhBrHQgGgbuq6UUhSagQibRtsBdRoK8ubUjtZC05SVCQBSECluJKlTYlsOc7Y3dR3CP577-JoNn4f-jTSCBBlqWXiSd1P6rheDK41Q-h2NhwMcHP8iQFz-kmyD5ON1I12TPf9D__48AfN0LT4C0Ewbn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124495808</pqid></control><display><type>article</type><title>Picosecond Fresnel transmission electron microscopy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Schliep, Karl B. ; Quarterman, P. ; Wang, Jian-Ping ; Flannigan, David J.</creator><creatorcontrib>Schliep, Karl B. ; Quarterman, P. ; Wang, Jian-Ping ; Flannigan, David J.</creatorcontrib><description>We report the demonstration of picosecond Fresnel imaging with an ultrafast transmission electron microscope (UEM). By operating with a low instrument repetition rate (5 kHz) and without objective-lens excitation, the picosecond demagnetization of an FePt film, via in situ, femtosecond laser excitation, is directly imaged. The dynamics are quantified and monitored as a time-dependent change in the degree of electron coherence within the magnetic domain walls. The relative coherence of conventional (thermionic) Fresnel transmission electron microscopy is also directly compared to that of Fresnel UEM through the domain-wall size. Further, the robustness and reversibility of the domain-wall dynamics are illustrated by repeating the picosecond image scans at defocus values having the same magnitude but different signs (e.g., +25 mm vs. −25 mm). Control experiments and approaches to identifying and isolating systematic errors and sources of artifacts are also described. This work, and continued future developments also described here, opens the way to direct correlation of transient structure, morphology, and magnetic dynamics in magnetic thin films and spintronic devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4984586</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Coherence ; Demagnetization ; Domain walls ; Electrons ; Excitation ; Magnetic domains ; Morphology ; Systematic errors ; Thin films ; Time dependence ; Transmission electron microscopy</subject><ispartof>Applied physics letters, 2017-05, Vol.110 (22)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-81139dbbd83c55931cc9ad3f21b3a7a0d49e5b20c527c511c21780854a2175f03</citedby><cites>FETCH-LOGICAL-c393t-81139dbbd83c55931cc9ad3f21b3a7a0d49e5b20c527c511c21780854a2175f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4984586$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Schliep, Karl B.</creatorcontrib><creatorcontrib>Quarterman, P.</creatorcontrib><creatorcontrib>Wang, Jian-Ping</creatorcontrib><creatorcontrib>Flannigan, David J.</creatorcontrib><title>Picosecond Fresnel transmission electron microscopy</title><title>Applied physics letters</title><description>We report the demonstration of picosecond Fresnel imaging with an ultrafast transmission electron microscope (UEM). By operating with a low instrument repetition rate (5 kHz) and without objective-lens excitation, the picosecond demagnetization of an FePt film, via in situ, femtosecond laser excitation, is directly imaged. The dynamics are quantified and monitored as a time-dependent change in the degree of electron coherence within the magnetic domain walls. The relative coherence of conventional (thermionic) Fresnel transmission electron microscopy is also directly compared to that of Fresnel UEM through the domain-wall size. Further, the robustness and reversibility of the domain-wall dynamics are illustrated by repeating the picosecond image scans at defocus values having the same magnitude but different signs (e.g., +25 mm vs. −25 mm). Control experiments and approaches to identifying and isolating systematic errors and sources of artifacts are also described. This work, and continued future developments also described here, opens the way to direct correlation of transient structure, morphology, and magnetic dynamics in magnetic thin films and spintronic devices.</description><subject>Applied physics</subject><subject>Coherence</subject><subject>Demagnetization</subject><subject>Domain walls</subject><subject>Electrons</subject><subject>Excitation</subject><subject>Magnetic domains</subject><subject>Morphology</subject><subject>Systematic errors</subject><subject>Thin films</subject><subject>Time dependence</subject><subject>Transmission electron microscopy</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqd0E9LwzAUAPAgCtbpwW9Q8KTQmZfXrMlRhlNhoAc9h_Q1hY6tqUkn7Nub0YF3T-89-PH-MXYLfA58gY8wL7UqpVqcsQx4VRUIoM5ZxjnHYqElXLKrGDeplAIxY_jRkY-OfN_kq-Bi77b5GGwfd12Mne9zt3U0hpTsOgo-kh8O1-yitdvobk5xxr5Wz5_L12L9_vK2fFoXhBrHQgGgbuq6UUhSagQibRtsBdRoK8ubUjtZC05SVCQBSECluJKlTYlsOc7Y3dR3CP577-JoNn4f-jTSCBBlqWXiSd1P6rheDK41Q-h2NhwMcHP8iQFz-kmyD5ON1I12TPf9D__48AfN0LT4C0Ewbn8</recordid><startdate>20170529</startdate><enddate>20170529</enddate><creator>Schliep, Karl B.</creator><creator>Quarterman, P.</creator><creator>Wang, Jian-Ping</creator><creator>Flannigan, David J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170529</creationdate><title>Picosecond Fresnel transmission electron microscopy</title><author>Schliep, Karl B. ; Quarterman, P. ; Wang, Jian-Ping ; Flannigan, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-81139dbbd83c55931cc9ad3f21b3a7a0d49e5b20c527c511c21780854a2175f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied physics</topic><topic>Coherence</topic><topic>Demagnetization</topic><topic>Domain walls</topic><topic>Electrons</topic><topic>Excitation</topic><topic>Magnetic domains</topic><topic>Morphology</topic><topic>Systematic errors</topic><topic>Thin films</topic><topic>Time dependence</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schliep, Karl B.</creatorcontrib><creatorcontrib>Quarterman, P.</creatorcontrib><creatorcontrib>Wang, Jian-Ping</creatorcontrib><creatorcontrib>Flannigan, David J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schliep, Karl B.</au><au>Quarterman, P.</au><au>Wang, Jian-Ping</au><au>Flannigan, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Picosecond Fresnel transmission electron microscopy</atitle><jtitle>Applied physics letters</jtitle><date>2017-05-29</date><risdate>2017</risdate><volume>110</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report the demonstration of picosecond Fresnel imaging with an ultrafast transmission electron microscope (UEM). By operating with a low instrument repetition rate (5 kHz) and without objective-lens excitation, the picosecond demagnetization of an FePt film, via in situ, femtosecond laser excitation, is directly imaged. The dynamics are quantified and monitored as a time-dependent change in the degree of electron coherence within the magnetic domain walls. The relative coherence of conventional (thermionic) Fresnel transmission electron microscopy is also directly compared to that of Fresnel UEM through the domain-wall size. Further, the robustness and reversibility of the domain-wall dynamics are illustrated by repeating the picosecond image scans at defocus values having the same magnitude but different signs (e.g., +25 mm vs. −25 mm). Control experiments and approaches to identifying and isolating systematic errors and sources of artifacts are also described. This work, and continued future developments also described here, opens the way to direct correlation of transient structure, morphology, and magnetic dynamics in magnetic thin films and spintronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4984586</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2017-05, Vol.110 (22)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_4984586
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Coherence
Demagnetization
Domain walls
Electrons
Excitation
Magnetic domains
Morphology
Systematic errors
Thin films
Time dependence
Transmission electron microscopy
title Picosecond Fresnel transmission electron microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Picosecond%20Fresnel%20transmission%20electron%20microscopy&rft.jtitle=Applied%20physics%20letters&rft.au=Schliep,%20Karl%20B.&rft.date=2017-05-29&rft.volume=110&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4984586&rft_dat=%3Cproquest_cross%3E2124495808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124495808&rft_id=info:pmid/&rfr_iscdi=true