Methods to improve harvested energy and conversion efficiency of viscoelastic dielectric elastomer generators

As a new transduction technology, dielectric elastomer generators (DEGs) are capable of converting mechanical energy from diverse sources into electrical energy. However, their energy harvesting performance is strongly affected by the material viscoelasticity. Based on the finite-deformation viscoel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2017-05, Vol.121 (18)
Hauptverfasser: Zhou, Jianyou, Jiang, Liying, Khayat, Roger E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a new transduction technology, dielectric elastomer generators (DEGs) are capable of converting mechanical energy from diverse sources into electrical energy. However, their energy harvesting performance is strongly affected by the material viscoelasticity. Based on the finite-deformation viscoelasticity theory and the nonlinear coupled field theory for dielectric elastomers, this work presents a theoretical framework to model the performance of DEGs. Motivated by the recent experiments of DEGs with a triangular harvesting scheme, we propose a method to optimize the harvesting cycle, which could significantly improve the conversion efficiency of viscoelastic DEGs. From our simulation results, choosing a higher voltage power source appears to be an effective way to improve the performance of DEGs. In addition, optimizing the period of the discharging process of DEG can markedly increase its efficiency. Also, we have uncovered that the triangular harvesting scheme for DEGs, which is expected to harvest energy close to the maximum achievable energy, could be actually realized by choosing dielectric elastomers with a higher fraction of time-independent polymer networks. The theoretical framework and simulation results presented in this work are expected to benefit the optimal design of DEGs for different applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4983074