On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons
The problem of the electron spectrum in a quasi-two-dimensional space (such as interfaces, heterostructures, and surfaces) is set up and analytically solved based on the fundamental Dirac equation. It is demonstrated that using the unitary transformation method and the method of spin invariants to s...
Gespeichert in:
Veröffentlicht in: | Low temperature physics (Woodbury, N.Y.) N.Y.), 2017-03, Vol.43 (3), p.371-382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 382 |
---|---|
container_issue | 3 |
container_start_page | 371 |
container_title | Low temperature physics (Woodbury, N.Y.) |
container_volume | 43 |
creator | Eremko, A. A. Loktev, V. M. |
description | The problem of the electron spectrum in a quasi-two-dimensional space (such as interfaces, heterostructures, and surfaces) is set up and analytically solved based on the fundamental Dirac equation. It is demonstrated that using the unitary transformation method and the method of spin invariants to solve the Dirac equation leads to identical results. The eigen bispinors of the Dirac equation are found, and the way in which their diversity arises due to the arbitrariness of the spin-quantization axis direction is demonstrated. The features of electron behavior in a parabolic quantum well are considered. |
doi_str_mv | 10.1063/1.4980861 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4980861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124501725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7422201ebfdaeb8d455c56a877c3f64f1a2e27979e0506623181d598a422022c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCJ4XUJLtJdo9S_IJCLwreYpqd1ZR2s02ySv-9WVv0IHiYzGTmmZfkReickgklIr-mk6IqSSnoARpRUhEsOJWHQy1yLKV8OUYnISwJoWlajdDrvM3iOwzh_DZzTQb2DdosdDYdUUcImW7r7zt2fmFjZtsIXptoXTvwm14Hi-Onw7VdQxtSW68yWIGJ3rXhFB01ehXgbJ_H6Pnu9mn6gGfz-8fpzQybnMmIZcEYIxQWTa1hUdYF54YLXUpp8kYUDdUMmKxkBYQTIVhOS1rzqtRpjzBm8jG62Ol23m16CFEtXe_TU4JilBWcUMl4oi53lPEuBA-N6rxda79VlKjBI0XV3sDEXu3YYGwyIv3rB_5w_hdUXd38B_9V_gJ_tX5v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124501725</pqid></control><display><type>article</type><title>On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons</title><source>AIP Journals Complete</source><creator>Eremko, A. A. ; Loktev, V. M.</creator><creatorcontrib>Eremko, A. A. ; Loktev, V. M.</creatorcontrib><description>The problem of the electron spectrum in a quasi-two-dimensional space (such as interfaces, heterostructures, and surfaces) is set up and analytically solved based on the fundamental Dirac equation. It is demonstrated that using the unitary transformation method and the method of spin invariants to solve the Dirac equation leads to identical results. The eigen bispinors of the Dirac equation are found, and the way in which their diversity arises due to the arbitrariness of the spin-quantization axis direction is demonstrated. The features of electron behavior in a parabolic quantum well are considered.</description><identifier>ISSN: 1063-777X</identifier><identifier>EISSN: 1090-6517</identifier><identifier>DOI: 10.1063/1.4980861</identifier><identifier>CODEN: LTPHEG</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dirac equation ; Electron spin ; Heterostructures ; Quantum wells ; Spin-orbit interactions</subject><ispartof>Low temperature physics (Woodbury, N.Y.), 2017-03, Vol.43 (3), p.371-382</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Mar 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7422201ebfdaeb8d455c56a877c3f64f1a2e27979e0506623181d598a422022c3</citedby><cites>FETCH-LOGICAL-c327t-7422201ebfdaeb8d455c56a877c3f64f1a2e27979e0506623181d598a422022c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ltp/article-lookup/doi/10.1063/1.4980861$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Eremko, A. A.</creatorcontrib><creatorcontrib>Loktev, V. M.</creatorcontrib><title>On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons</title><title>Low temperature physics (Woodbury, N.Y.)</title><description>The problem of the electron spectrum in a quasi-two-dimensional space (such as interfaces, heterostructures, and surfaces) is set up and analytically solved based on the fundamental Dirac equation. It is demonstrated that using the unitary transformation method and the method of spin invariants to solve the Dirac equation leads to identical results. The eigen bispinors of the Dirac equation are found, and the way in which their diversity arises due to the arbitrariness of the spin-quantization axis direction is demonstrated. The features of electron behavior in a parabolic quantum well are considered.</description><subject>Dirac equation</subject><subject>Electron spin</subject><subject>Heterostructures</subject><subject>Quantum wells</subject><subject>Spin-orbit interactions</subject><issn>1063-777X</issn><issn>1090-6517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCJ4XUJLtJdo9S_IJCLwreYpqd1ZR2s02ySv-9WVv0IHiYzGTmmZfkReickgklIr-mk6IqSSnoARpRUhEsOJWHQy1yLKV8OUYnISwJoWlajdDrvM3iOwzh_DZzTQb2DdosdDYdUUcImW7r7zt2fmFjZtsIXptoXTvwm14Hi-Onw7VdQxtSW68yWIGJ3rXhFB01ehXgbJ_H6Pnu9mn6gGfz-8fpzQybnMmIZcEYIxQWTa1hUdYF54YLXUpp8kYUDdUMmKxkBYQTIVhOS1rzqtRpjzBm8jG62Ol23m16CFEtXe_TU4JilBWcUMl4oi53lPEuBA-N6rxda79VlKjBI0XV3sDEXu3YYGwyIv3rB_5w_hdUXd38B_9V_gJ_tX5v</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Eremko, A. A.</creator><creator>Loktev, V. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201703</creationdate><title>On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons</title><author>Eremko, A. A. ; Loktev, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7422201ebfdaeb8d455c56a877c3f64f1a2e27979e0506623181d598a422022c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dirac equation</topic><topic>Electron spin</topic><topic>Heterostructures</topic><topic>Quantum wells</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eremko, A. A.</creatorcontrib><creatorcontrib>Loktev, V. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eremko, A. A.</au><au>Loktev, V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons</atitle><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle><date>2017-03</date><risdate>2017</risdate><volume>43</volume><issue>3</issue><spage>371</spage><epage>382</epage><pages>371-382</pages><issn>1063-777X</issn><eissn>1090-6517</eissn><coden>LTPHEG</coden><abstract>The problem of the electron spectrum in a quasi-two-dimensional space (such as interfaces, heterostructures, and surfaces) is set up and analytically solved based on the fundamental Dirac equation. It is demonstrated that using the unitary transformation method and the method of spin invariants to solve the Dirac equation leads to identical results. The eigen bispinors of the Dirac equation are found, and the way in which their diversity arises due to the arbitrariness of the spin-quantization axis direction is demonstrated. The features of electron behavior in a parabolic quantum well are considered.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4980861</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-777X |
ispartof | Low temperature physics (Woodbury, N.Y.), 2017-03, Vol.43 (3), p.371-382 |
issn | 1063-777X 1090-6517 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4980861 |
source | AIP Journals Complete |
subjects | Dirac equation Electron spin Heterostructures Quantum wells Spin-orbit interactions |
title | On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20theory%20of%20eigen%20spin%20states%20and%20spin-orbit%20interaction%20of%20quasi-two-dimensional%20electrons&rft.jtitle=Low%20temperature%20physics%20(Woodbury,%20N.Y.)&rft.au=Eremko,%20A.%20A.&rft.date=2017-03&rft.volume=43&rft.issue=3&rft.spage=371&rft.epage=382&rft.pages=371-382&rft.issn=1063-777X&rft.eissn=1090-6517&rft.coden=LTPHEG&rft_id=info:doi/10.1063/1.4980861&rft_dat=%3Cproquest_cross%3E2124501725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124501725&rft_id=info:pmid/&rfr_iscdi=true |