On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons

The problem of the electron spectrum in a quasi-two-dimensional space (such as interfaces, heterostructures, and surfaces) is set up and analytically solved based on the fundamental Dirac equation. It is demonstrated that using the unitary transformation method and the method of spin invariants to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Low temperature physics (Woodbury, N.Y.) N.Y.), 2017-03, Vol.43 (3), p.371-382
Hauptverfasser: Eremko, A. A., Loktev, V. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 3
container_start_page 371
container_title Low temperature physics (Woodbury, N.Y.)
container_volume 43
creator Eremko, A. A.
Loktev, V. M.
description The problem of the electron spectrum in a quasi-two-dimensional space (such as interfaces, heterostructures, and surfaces) is set up and analytically solved based on the fundamental Dirac equation. It is demonstrated that using the unitary transformation method and the method of spin invariants to solve the Dirac equation leads to identical results. The eigen bispinors of the Dirac equation are found, and the way in which their diversity arises due to the arbitrariness of the spin-quantization axis direction is demonstrated. The features of electron behavior in a parabolic quantum well are considered.
doi_str_mv 10.1063/1.4980861
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4980861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124501725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7422201ebfdaeb8d455c56a877c3f64f1a2e27979e0506623181d598a422022c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCJ4XUJLtJdo9S_IJCLwreYpqd1ZR2s02ySv-9WVv0IHiYzGTmmZfkReickgklIr-mk6IqSSnoARpRUhEsOJWHQy1yLKV8OUYnISwJoWlajdDrvM3iOwzh_DZzTQb2DdosdDYdUUcImW7r7zt2fmFjZtsIXptoXTvwm14Hi-Onw7VdQxtSW68yWIGJ3rXhFB01ehXgbJ_H6Pnu9mn6gGfz-8fpzQybnMmIZcEYIxQWTa1hUdYF54YLXUpp8kYUDdUMmKxkBYQTIVhOS1rzqtRpjzBm8jG62Ol23m16CFEtXe_TU4JilBWcUMl4oi53lPEuBA-N6rxda79VlKjBI0XV3sDEXu3YYGwyIv3rB_5w_hdUXd38B_9V_gJ_tX5v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124501725</pqid></control><display><type>article</type><title>On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons</title><source>AIP Journals Complete</source><creator>Eremko, A. A. ; Loktev, V. M.</creator><creatorcontrib>Eremko, A. A. ; Loktev, V. M.</creatorcontrib><description>The problem of the electron spectrum in a quasi-two-dimensional space (such as interfaces, heterostructures, and surfaces) is set up and analytically solved based on the fundamental Dirac equation. It is demonstrated that using the unitary transformation method and the method of spin invariants to solve the Dirac equation leads to identical results. The eigen bispinors of the Dirac equation are found, and the way in which their diversity arises due to the arbitrariness of the spin-quantization axis direction is demonstrated. The features of electron behavior in a parabolic quantum well are considered.</description><identifier>ISSN: 1063-777X</identifier><identifier>EISSN: 1090-6517</identifier><identifier>DOI: 10.1063/1.4980861</identifier><identifier>CODEN: LTPHEG</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dirac equation ; Electron spin ; Heterostructures ; Quantum wells ; Spin-orbit interactions</subject><ispartof>Low temperature physics (Woodbury, N.Y.), 2017-03, Vol.43 (3), p.371-382</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Mar 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7422201ebfdaeb8d455c56a877c3f64f1a2e27979e0506623181d598a422022c3</citedby><cites>FETCH-LOGICAL-c327t-7422201ebfdaeb8d455c56a877c3f64f1a2e27979e0506623181d598a422022c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ltp/article-lookup/doi/10.1063/1.4980861$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Eremko, A. A.</creatorcontrib><creatorcontrib>Loktev, V. M.</creatorcontrib><title>On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons</title><title>Low temperature physics (Woodbury, N.Y.)</title><description>The problem of the electron spectrum in a quasi-two-dimensional space (such as interfaces, heterostructures, and surfaces) is set up and analytically solved based on the fundamental Dirac equation. It is demonstrated that using the unitary transformation method and the method of spin invariants to solve the Dirac equation leads to identical results. The eigen bispinors of the Dirac equation are found, and the way in which their diversity arises due to the arbitrariness of the spin-quantization axis direction is demonstrated. The features of electron behavior in a parabolic quantum well are considered.</description><subject>Dirac equation</subject><subject>Electron spin</subject><subject>Heterostructures</subject><subject>Quantum wells</subject><subject>Spin-orbit interactions</subject><issn>1063-777X</issn><issn>1090-6517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCJ4XUJLtJdo9S_IJCLwreYpqd1ZR2s02ySv-9WVv0IHiYzGTmmZfkReickgklIr-mk6IqSSnoARpRUhEsOJWHQy1yLKV8OUYnISwJoWlajdDrvM3iOwzh_DZzTQb2DdosdDYdUUcImW7r7zt2fmFjZtsIXptoXTvwm14Hi-Onw7VdQxtSW68yWIGJ3rXhFB01ehXgbJ_H6Pnu9mn6gGfz-8fpzQybnMmIZcEYIxQWTa1hUdYF54YLXUpp8kYUDdUMmKxkBYQTIVhOS1rzqtRpjzBm8jG62Ol23m16CFEtXe_TU4JilBWcUMl4oi53lPEuBA-N6rxda79VlKjBI0XV3sDEXu3YYGwyIv3rB_5w_hdUXd38B_9V_gJ_tX5v</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Eremko, A. A.</creator><creator>Loktev, V. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201703</creationdate><title>On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons</title><author>Eremko, A. A. ; Loktev, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7422201ebfdaeb8d455c56a877c3f64f1a2e27979e0506623181d598a422022c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dirac equation</topic><topic>Electron spin</topic><topic>Heterostructures</topic><topic>Quantum wells</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eremko, A. A.</creatorcontrib><creatorcontrib>Loktev, V. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eremko, A. A.</au><au>Loktev, V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons</atitle><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle><date>2017-03</date><risdate>2017</risdate><volume>43</volume><issue>3</issue><spage>371</spage><epage>382</epage><pages>371-382</pages><issn>1063-777X</issn><eissn>1090-6517</eissn><coden>LTPHEG</coden><abstract>The problem of the electron spectrum in a quasi-two-dimensional space (such as interfaces, heterostructures, and surfaces) is set up and analytically solved based on the fundamental Dirac equation. It is demonstrated that using the unitary transformation method and the method of spin invariants to solve the Dirac equation leads to identical results. The eigen bispinors of the Dirac equation are found, and the way in which their diversity arises due to the arbitrariness of the spin-quantization axis direction is demonstrated. The features of electron behavior in a parabolic quantum well are considered.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4980861</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-777X
ispartof Low temperature physics (Woodbury, N.Y.), 2017-03, Vol.43 (3), p.371-382
issn 1063-777X
1090-6517
language eng
recordid cdi_crossref_primary_10_1063_1_4980861
source AIP Journals Complete
subjects Dirac equation
Electron spin
Heterostructures
Quantum wells
Spin-orbit interactions
title On the theory of eigen spin states and spin-orbit interaction of quasi-two-dimensional electrons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20theory%20of%20eigen%20spin%20states%20and%20spin-orbit%20interaction%20of%20quasi-two-dimensional%20electrons&rft.jtitle=Low%20temperature%20physics%20(Woodbury,%20N.Y.)&rft.au=Eremko,%20A.%20A.&rft.date=2017-03&rft.volume=43&rft.issue=3&rft.spage=371&rft.epage=382&rft.pages=371-382&rft.issn=1063-777X&rft.eissn=1090-6517&rft.coden=LTPHEG&rft_id=info:doi/10.1063/1.4980861&rft_dat=%3Cproquest_cross%3E2124501725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124501725&rft_id=info:pmid/&rfr_iscdi=true