Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors

We study the effect of surface passivation on pseudomorphic multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors. A combination of ozone oxidation to form GeOx and GeSnOx on the surface of the diodes followed by atomic layer deposition of Al2O3 for protection of these native oxides provides re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-02, Vol.110 (9)
Hauptverfasser: Morea, Matthew, Brendel, Corinna E., Zang, Kai, Suh, Junkyo, Fenrich, Colleen S., Huang, Yi-Chiau, Chung, Hua, Huo, Yijie, Kamins, Theodore I., Saraswat, Krishna C., Harris, James S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Applied physics letters
container_volume 110
creator Morea, Matthew
Brendel, Corinna E.
Zang, Kai
Suh, Junkyo
Fenrich, Colleen S.
Huang, Yi-Chiau
Chung, Hua
Huo, Yijie
Kamins, Theodore I.
Saraswat, Krishna C.
Harris, James S.
description We study the effect of surface passivation on pseudomorphic multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors. A combination of ozone oxidation to form GeOx and GeSnOx on the surface of the diodes followed by atomic layer deposition of Al2O3 for protection of these native oxides provides reduced dark current. With a temperature-dependent investigation of dark current, we calculate the activation energy to be 0.26 eV at a bias of −0.1 V and 0.05 eV at −1 V for the sample passivated by this ozone method. Based on these activation energy results, we find that the current is less dominated by bulk tunneling at lower reverse bias values; hence, the effect of surface passivation is more noticeable with nearly an order-of-magnitude improvement in dark current for the ozone-passivated sample compared to control devices without the ozone treatment at a voltage of −0.1 V. Passivation also results in a significant enhancement of the responsivity, particularly for shorter wavelengths, with 26% higher responsivity at 1100 nm and 16% higher performance at 1300 nm.
doi_str_mv 10.1063/1.4977878
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4977878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124526045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f712ba75e0ffa64faea1253c8707064bee1204ab6a6cccb37ab617bfb1ccdaeb3</originalsourceid><addsrcrecordid>eNp90FFLwzAQB_AgCs7pg9-g4JNCurumbdpHGVoHAwX1OaRZgh1d0yXpxG9vdUMfBJ_uDn78D_6EXCLECDmbYZyWnBe8OCITBM4pQyyOyQQAGM3LDE_Jmffr8cwSxiZk8SS9b3YyNLaLrIk2QxuavtV0O8guDBv6rts2qjTEJX_uIAY2q3TU04Z2Uf9mg13poFWwzp-TEyNbry8Oc0pe7-9e5g90-Vgt5rdLqljJAjUck1ryTIMxMk-N1BKTjKmCA4c8rbXGBFJZ5zJXStWMjyvy2tSo1Erqmk3J1T63d3Y7aB_E2g6uG1-KBJM0S3JIs1Fd75Vy1nunjehds5HuQyCIr6YEikNTo73ZW6-a8N3ED95Z9wtFvzL_4b_JnzqEdqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124526045</pqid></control><display><type>article</type><title>Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Morea, Matthew ; Brendel, Corinna E. ; Zang, Kai ; Suh, Junkyo ; Fenrich, Colleen S. ; Huang, Yi-Chiau ; Chung, Hua ; Huo, Yijie ; Kamins, Theodore I. ; Saraswat, Krishna C. ; Harris, James S.</creator><creatorcontrib>Morea, Matthew ; Brendel, Corinna E. ; Zang, Kai ; Suh, Junkyo ; Fenrich, Colleen S. ; Huang, Yi-Chiau ; Chung, Hua ; Huo, Yijie ; Kamins, Theodore I. ; Saraswat, Krishna C. ; Harris, James S.</creatorcontrib><description>We study the effect of surface passivation on pseudomorphic multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors. A combination of ozone oxidation to form GeOx and GeSnOx on the surface of the diodes followed by atomic layer deposition of Al2O3 for protection of these native oxides provides reduced dark current. With a temperature-dependent investigation of dark current, we calculate the activation energy to be 0.26 eV at a bias of −0.1 V and 0.05 eV at −1 V for the sample passivated by this ozone method. Based on these activation energy results, we find that the current is less dominated by bulk tunneling at lower reverse bias values; hence, the effect of surface passivation is more noticeable with nearly an order-of-magnitude improvement in dark current for the ozone-passivated sample compared to control devices without the ozone treatment at a voltage of −0.1 V. Passivation also results in a significant enhancement of the responsivity, particularly for shorter wavelengths, with 26% higher responsivity at 1100 nm and 16% higher performance at 1300 nm.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4977878</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Activation energy ; Aluminum oxide ; Applied physics ; Atomic layer epitaxy ; Bias ; Dark current ; Diodes ; Germanium oxides ; Oxidation ; Ozone ; Passivity ; Photometers ; Quantum wells ; Temperature dependence</subject><ispartof>Applied physics letters, 2017-02, Vol.110 (9)</ispartof><rights>Author(s)</rights><rights>2017 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f712ba75e0ffa64faea1253c8707064bee1204ab6a6cccb37ab617bfb1ccdaeb3</citedby><cites>FETCH-LOGICAL-c393t-f712ba75e0ffa64faea1253c8707064bee1204ab6a6cccb37ab617bfb1ccdaeb3</cites><orcidid>0000-0001-7635-3556 ; 0000-0001-6230-3072 ; 0000-0001-8319-1161 ; 0000-0003-1488-3177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4977878$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,782,786,796,4514,27931,27932,76392</link.rule.ids></links><search><creatorcontrib>Morea, Matthew</creatorcontrib><creatorcontrib>Brendel, Corinna E.</creatorcontrib><creatorcontrib>Zang, Kai</creatorcontrib><creatorcontrib>Suh, Junkyo</creatorcontrib><creatorcontrib>Fenrich, Colleen S.</creatorcontrib><creatorcontrib>Huang, Yi-Chiau</creatorcontrib><creatorcontrib>Chung, Hua</creatorcontrib><creatorcontrib>Huo, Yijie</creatorcontrib><creatorcontrib>Kamins, Theodore I.</creatorcontrib><creatorcontrib>Saraswat, Krishna C.</creatorcontrib><creatorcontrib>Harris, James S.</creatorcontrib><title>Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors</title><title>Applied physics letters</title><description>We study the effect of surface passivation on pseudomorphic multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors. A combination of ozone oxidation to form GeOx and GeSnOx on the surface of the diodes followed by atomic layer deposition of Al2O3 for protection of these native oxides provides reduced dark current. With a temperature-dependent investigation of dark current, we calculate the activation energy to be 0.26 eV at a bias of −0.1 V and 0.05 eV at −1 V for the sample passivated by this ozone method. Based on these activation energy results, we find that the current is less dominated by bulk tunneling at lower reverse bias values; hence, the effect of surface passivation is more noticeable with nearly an order-of-magnitude improvement in dark current for the ozone-passivated sample compared to control devices without the ozone treatment at a voltage of −0.1 V. Passivation also results in a significant enhancement of the responsivity, particularly for shorter wavelengths, with 26% higher responsivity at 1100 nm and 16% higher performance at 1300 nm.</description><subject>Activation energy</subject><subject>Aluminum oxide</subject><subject>Applied physics</subject><subject>Atomic layer epitaxy</subject><subject>Bias</subject><subject>Dark current</subject><subject>Diodes</subject><subject>Germanium oxides</subject><subject>Oxidation</subject><subject>Ozone</subject><subject>Passivity</subject><subject>Photometers</subject><subject>Quantum wells</subject><subject>Temperature dependence</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90FFLwzAQB_AgCs7pg9-g4JNCurumbdpHGVoHAwX1OaRZgh1d0yXpxG9vdUMfBJ_uDn78D_6EXCLECDmbYZyWnBe8OCITBM4pQyyOyQQAGM3LDE_Jmffr8cwSxiZk8SS9b3YyNLaLrIk2QxuavtV0O8guDBv6rts2qjTEJX_uIAY2q3TU04Z2Uf9mg13poFWwzp-TEyNbry8Oc0pe7-9e5g90-Vgt5rdLqljJAjUck1ryTIMxMk-N1BKTjKmCA4c8rbXGBFJZ5zJXStWMjyvy2tSo1Erqmk3J1T63d3Y7aB_E2g6uG1-KBJM0S3JIs1Fd75Vy1nunjehds5HuQyCIr6YEikNTo73ZW6-a8N3ED95Z9wtFvzL_4b_JnzqEdqg</recordid><startdate>20170227</startdate><enddate>20170227</enddate><creator>Morea, Matthew</creator><creator>Brendel, Corinna E.</creator><creator>Zang, Kai</creator><creator>Suh, Junkyo</creator><creator>Fenrich, Colleen S.</creator><creator>Huang, Yi-Chiau</creator><creator>Chung, Hua</creator><creator>Huo, Yijie</creator><creator>Kamins, Theodore I.</creator><creator>Saraswat, Krishna C.</creator><creator>Harris, James S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7635-3556</orcidid><orcidid>https://orcid.org/0000-0001-6230-3072</orcidid><orcidid>https://orcid.org/0000-0001-8319-1161</orcidid><orcidid>https://orcid.org/0000-0003-1488-3177</orcidid></search><sort><creationdate>20170227</creationdate><title>Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors</title><author>Morea, Matthew ; Brendel, Corinna E. ; Zang, Kai ; Suh, Junkyo ; Fenrich, Colleen S. ; Huang, Yi-Chiau ; Chung, Hua ; Huo, Yijie ; Kamins, Theodore I. ; Saraswat, Krishna C. ; Harris, James S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f712ba75e0ffa64faea1253c8707064bee1204ab6a6cccb37ab617bfb1ccdaeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Aluminum oxide</topic><topic>Applied physics</topic><topic>Atomic layer epitaxy</topic><topic>Bias</topic><topic>Dark current</topic><topic>Diodes</topic><topic>Germanium oxides</topic><topic>Oxidation</topic><topic>Ozone</topic><topic>Passivity</topic><topic>Photometers</topic><topic>Quantum wells</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morea, Matthew</creatorcontrib><creatorcontrib>Brendel, Corinna E.</creatorcontrib><creatorcontrib>Zang, Kai</creatorcontrib><creatorcontrib>Suh, Junkyo</creatorcontrib><creatorcontrib>Fenrich, Colleen S.</creatorcontrib><creatorcontrib>Huang, Yi-Chiau</creatorcontrib><creatorcontrib>Chung, Hua</creatorcontrib><creatorcontrib>Huo, Yijie</creatorcontrib><creatorcontrib>Kamins, Theodore I.</creatorcontrib><creatorcontrib>Saraswat, Krishna C.</creatorcontrib><creatorcontrib>Harris, James S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morea, Matthew</au><au>Brendel, Corinna E.</au><au>Zang, Kai</au><au>Suh, Junkyo</au><au>Fenrich, Colleen S.</au><au>Huang, Yi-Chiau</au><au>Chung, Hua</au><au>Huo, Yijie</au><au>Kamins, Theodore I.</au><au>Saraswat, Krishna C.</au><au>Harris, James S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors</atitle><jtitle>Applied physics letters</jtitle><date>2017-02-27</date><risdate>2017</risdate><volume>110</volume><issue>9</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We study the effect of surface passivation on pseudomorphic multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors. A combination of ozone oxidation to form GeOx and GeSnOx on the surface of the diodes followed by atomic layer deposition of Al2O3 for protection of these native oxides provides reduced dark current. With a temperature-dependent investigation of dark current, we calculate the activation energy to be 0.26 eV at a bias of −0.1 V and 0.05 eV at −1 V for the sample passivated by this ozone method. Based on these activation energy results, we find that the current is less dominated by bulk tunneling at lower reverse bias values; hence, the effect of surface passivation is more noticeable with nearly an order-of-magnitude improvement in dark current for the ozone-passivated sample compared to control devices without the ozone treatment at a voltage of −0.1 V. Passivation also results in a significant enhancement of the responsivity, particularly for shorter wavelengths, with 26% higher responsivity at 1100 nm and 16% higher performance at 1300 nm.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4977878</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7635-3556</orcidid><orcidid>https://orcid.org/0000-0001-6230-3072</orcidid><orcidid>https://orcid.org/0000-0001-8319-1161</orcidid><orcidid>https://orcid.org/0000-0003-1488-3177</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2017-02, Vol.110 (9)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_4977878
source AIP Journals Complete; Alma/SFX Local Collection
subjects Activation energy
Aluminum oxide
Applied physics
Atomic layer epitaxy
Bias
Dark current
Diodes
Germanium oxides
Oxidation
Ozone
Passivity
Photometers
Quantum wells
Temperature dependence
title Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T20%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passivation%20of%20multiple-quantum-well%20Ge0.97Sn0.03/Ge%20p-i-n%20photodetectors&rft.jtitle=Applied%20physics%20letters&rft.au=Morea,%20Matthew&rft.date=2017-02-27&rft.volume=110&rft.issue=9&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4977878&rft_dat=%3Cproquest_cross%3E2124526045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124526045&rft_id=info:pmid/&rfr_iscdi=true