High-temperature quantum kinetic effect in silicon nanosandwiches

The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Low temperature physics (Woodbury, N.Y.) N.Y.), 2017-01, Vol.43 (1), p.110-119
Hauptverfasser: Bagraev, N. T., Grigoryev, V. Yu, Klyachkin, L. E., Malyarenko, A. M., Mashkov, V. A., Romanov, V. V., Rul, N. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 110
container_title Low temperature physics (Woodbury, N.Y.)
container_volume 43
creator Bagraev, N. T.
Grigoryev, V. Yu
Klyachkin, L. E.
Malyarenko, A. M.
Mashkov, V. A.
Romanov, V. V.
Rul, N. I.
description The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the quantum kinetic phenomena in weak magnetic fields at high-temperatures up to the room temperature. As a certain version noted above we present the first findings of the high temperature de Haas-van Alphen, 300 K, quantum Hall, 77 K, effects as well as quantum conductance staircase in the silicon sandwich structure that represents the ultra-narrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface.
doi_str_mv 10.1063/1.4974190
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4974190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124537874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-60e4cc98b5ff9f6ee4ac48f8cbfedbd8a1aa5fd43865075b3252733aadafbf53</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pwW9Q8KTQmTRJ0x7HUCcMvOzgLbymicvcki5JFb-9HRt6EDy9B-_H_8EfoWuCJwSX9J5MWC0YqfEJGhFc47zkRJzu95LmQojXc3QR4xpjMlzrEZrO7dsqT3rb6QCpDzrb9eBSv83erdPJqkwbo1XKrMui3VjlXebA-Qiu_bRqpeMlOjOwifrqOMdo-fiwnM3zxcvT82y6yBUtRMpLrJlSddVwY2pTas1AscpUqjG6bdoKCAA3LaNVybHgDS14ISgFaME0htMxujnEdsHveh2TXPs-uOGjLEjBOBWVYIO6PSgVfIxBG9kFu4XwJQmW-w4kkceCBnt3sFHZBMl694M_fPiFsmvNf_hv8jc4TnWK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124537874</pqid></control><display><type>article</type><title>High-temperature quantum kinetic effect in silicon nanosandwiches</title><source>Scitation (American Institute of Physics)</source><creator>Bagraev, N. T. ; Grigoryev, V. Yu ; Klyachkin, L. E. ; Malyarenko, A. M. ; Mashkov, V. A. ; Romanov, V. V. ; Rul, N. I.</creator><creatorcontrib>Bagraev, N. T. ; Grigoryev, V. Yu ; Klyachkin, L. E. ; Malyarenko, A. M. ; Mashkov, V. A. ; Romanov, V. V. ; Rul, N. I.</creatorcontrib><description>The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the quantum kinetic phenomena in weak magnetic fields at high-temperatures up to the room temperature. As a certain version noted above we present the first findings of the high temperature de Haas-van Alphen, 300 K, quantum Hall, 77 K, effects as well as quantum conductance staircase in the silicon sandwich structure that represents the ultra-narrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface.</description><identifier>ISSN: 1063-777X</identifier><identifier>EISSN: 1090-6517</identifier><identifier>DOI: 10.1063/1.4974190</identifier><identifier>CODEN: LTPHEG</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boron ; Bosons ; Carrier density ; Channels ; Confining ; Cooling effects ; De Haas-Van Alphen effect ; Fermions ; Magnetic flux ; Quantum theory ; Quantum wells ; Resistance ; Sandwich structures ; Silicon ; Temperature</subject><ispartof>Low temperature physics (Woodbury, N.Y.), 2017-01, Vol.43 (1), p.110-119</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Jan 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-60e4cc98b5ff9f6ee4ac48f8cbfedbd8a1aa5fd43865075b3252733aadafbf53</citedby><cites>FETCH-LOGICAL-c327t-60e4cc98b5ff9f6ee4ac48f8cbfedbd8a1aa5fd43865075b3252733aadafbf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ltp/article-lookup/doi/10.1063/1.4974190$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4502,27915,27916,76145</link.rule.ids></links><search><creatorcontrib>Bagraev, N. T.</creatorcontrib><creatorcontrib>Grigoryev, V. Yu</creatorcontrib><creatorcontrib>Klyachkin, L. E.</creatorcontrib><creatorcontrib>Malyarenko, A. M.</creatorcontrib><creatorcontrib>Mashkov, V. A.</creatorcontrib><creatorcontrib>Romanov, V. V.</creatorcontrib><creatorcontrib>Rul, N. I.</creatorcontrib><title>High-temperature quantum kinetic effect in silicon nanosandwiches</title><title>Low temperature physics (Woodbury, N.Y.)</title><description>The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the quantum kinetic phenomena in weak magnetic fields at high-temperatures up to the room temperature. As a certain version noted above we present the first findings of the high temperature de Haas-van Alphen, 300 K, quantum Hall, 77 K, effects as well as quantum conductance staircase in the silicon sandwich structure that represents the ultra-narrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface.</description><subject>Boron</subject><subject>Bosons</subject><subject>Carrier density</subject><subject>Channels</subject><subject>Confining</subject><subject>Cooling effects</subject><subject>De Haas-Van Alphen effect</subject><subject>Fermions</subject><subject>Magnetic flux</subject><subject>Quantum theory</subject><subject>Quantum wells</subject><subject>Resistance</subject><subject>Sandwich structures</subject><subject>Silicon</subject><subject>Temperature</subject><issn>1063-777X</issn><issn>1090-6517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAUB_AgCs7pwW9Q8KTQmTRJ0x7HUCcMvOzgLbymicvcki5JFb-9HRt6EDy9B-_H_8EfoWuCJwSX9J5MWC0YqfEJGhFc47zkRJzu95LmQojXc3QR4xpjMlzrEZrO7dsqT3rb6QCpDzrb9eBSv83erdPJqkwbo1XKrMui3VjlXebA-Qiu_bRqpeMlOjOwifrqOMdo-fiwnM3zxcvT82y6yBUtRMpLrJlSddVwY2pTas1AscpUqjG6bdoKCAA3LaNVybHgDS14ISgFaME0htMxujnEdsHveh2TXPs-uOGjLEjBOBWVYIO6PSgVfIxBG9kFu4XwJQmW-w4kkceCBnt3sFHZBMl694M_fPiFsmvNf_hv8jc4TnWK</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Bagraev, N. T.</creator><creator>Grigoryev, V. Yu</creator><creator>Klyachkin, L. E.</creator><creator>Malyarenko, A. M.</creator><creator>Mashkov, V. A.</creator><creator>Romanov, V. V.</creator><creator>Rul, N. I.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201701</creationdate><title>High-temperature quantum kinetic effect in silicon nanosandwiches</title><author>Bagraev, N. T. ; Grigoryev, V. Yu ; Klyachkin, L. E. ; Malyarenko, A. M. ; Mashkov, V. A. ; Romanov, V. V. ; Rul, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-60e4cc98b5ff9f6ee4ac48f8cbfedbd8a1aa5fd43865075b3252733aadafbf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boron</topic><topic>Bosons</topic><topic>Carrier density</topic><topic>Channels</topic><topic>Confining</topic><topic>Cooling effects</topic><topic>De Haas-Van Alphen effect</topic><topic>Fermions</topic><topic>Magnetic flux</topic><topic>Quantum theory</topic><topic>Quantum wells</topic><topic>Resistance</topic><topic>Sandwich structures</topic><topic>Silicon</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagraev, N. T.</creatorcontrib><creatorcontrib>Grigoryev, V. Yu</creatorcontrib><creatorcontrib>Klyachkin, L. E.</creatorcontrib><creatorcontrib>Malyarenko, A. M.</creatorcontrib><creatorcontrib>Mashkov, V. A.</creatorcontrib><creatorcontrib>Romanov, V. V.</creatorcontrib><creatorcontrib>Rul, N. I.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagraev, N. T.</au><au>Grigoryev, V. Yu</au><au>Klyachkin, L. E.</au><au>Malyarenko, A. M.</au><au>Mashkov, V. A.</au><au>Romanov, V. V.</au><au>Rul, N. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature quantum kinetic effect in silicon nanosandwiches</atitle><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle><date>2017-01</date><risdate>2017</risdate><volume>43</volume><issue>1</issue><spage>110</spage><epage>119</epage><pages>110-119</pages><issn>1063-777X</issn><eissn>1090-6517</eissn><coden>LTPHEG</coden><abstract>The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the quantum kinetic phenomena in weak magnetic fields at high-temperatures up to the room temperature. As a certain version noted above we present the first findings of the high temperature de Haas-van Alphen, 300 K, quantum Hall, 77 K, effects as well as quantum conductance staircase in the silicon sandwich structure that represents the ultra-narrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4974190</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-777X
ispartof Low temperature physics (Woodbury, N.Y.), 2017-01, Vol.43 (1), p.110-119
issn 1063-777X
1090-6517
language eng
recordid cdi_crossref_primary_10_1063_1_4974190
source Scitation (American Institute of Physics)
subjects Boron
Bosons
Carrier density
Channels
Confining
Cooling effects
De Haas-Van Alphen effect
Fermions
Magnetic flux
Quantum theory
Quantum wells
Resistance
Sandwich structures
Silicon
Temperature
title High-temperature quantum kinetic effect in silicon nanosandwiches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20quantum%20kinetic%20effect%20in%20silicon%20nanosandwiches&rft.jtitle=Low%20temperature%20physics%20(Woodbury,%20N.Y.)&rft.au=Bagraev,%20N.%20T.&rft.date=2017-01&rft.volume=43&rft.issue=1&rft.spage=110&rft.epage=119&rft.pages=110-119&rft.issn=1063-777X&rft.eissn=1090-6517&rft.coden=LTPHEG&rft_id=info:doi/10.1063/1.4974190&rft_dat=%3Cproquest_cross%3E2124537874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124537874&rft_id=info:pmid/&rfr_iscdi=true