Highly tuneable hole quantum dots in Ge-Si core-shell nanowires
We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over th...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2016-10, Vol.109 (14) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 109 |
creator | Brauns, Matthias Ridderbos, Joost Li, Ang van der Wiel, Wilfred G. Bakkers, Erik P. A. M. Zwanenburg, Floris A. |
description | We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over the tunnel couplings and the electrochemical potential of each dot. Both single and double quantum dot configurations prove to be very stable and show excellent control over the electrostatic environment of the dots, making this system a highly versatile platform for spin-based quantum computing. |
doi_str_mv | 10.1063/1.4963715 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4963715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121584926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-340e6cd76037c8b021c57602a5c79c384b6a9b3d006e9e96dbd33c14f36824113</originalsourceid><addsrcrecordid>eNqd0EFLwzAUB_AgCs7pwW9Q8KSQmZeXpu1JZOgmDDyo55Cmqe3omi1JlX17Kxt49_Ief_jxHvwJuQY2AybxHmaikJhBekImwLKMIkB-SiaMMaSySOGcXISwHmPKESfkYdl-Nt0-iUNvddnZpHHj2A26j8MmqVwMSdsnC0vf2sQ4b2lobNclve7dd-ttuCRnte6CvTruKfl4fnqfL-nqdfEyf1xRI3geKQpmpakyyTAzeck4mHQMXKcmKwzmopS6KLFiTNrCFrIqK0QDokaZcwGAU3JzuLv1bjfYENXaDb4fXyoOHNJcFFyO6vagjHcheFurrW832u8VMPXbjwJ17Ge0dwcbTBt1bF3_P_zl_B9U26rGH94ncXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121584926</pqid></control><display><type>article</type><title>Highly tuneable hole quantum dots in Ge-Si core-shell nanowires</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Brauns, Matthias ; Ridderbos, Joost ; Li, Ang ; van der Wiel, Wilfred G. ; Bakkers, Erik P. A. M. ; Zwanenburg, Floris A.</creator><creatorcontrib>Brauns, Matthias ; Ridderbos, Joost ; Li, Ang ; van der Wiel, Wilfred G. ; Bakkers, Erik P. A. M. ; Zwanenburg, Floris A.</creatorcontrib><description>We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over the tunnel couplings and the electrochemical potential of each dot. Both single and double quantum dot configurations prove to be very stable and show excellent control over the electrostatic environment of the dots, making this system a highly versatile platform for spin-based quantum computing.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4963715</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Couplings ; Electrochemical potential ; Electrons ; Germanium ; Nanowires ; Quantum computing ; Quantum dots ; Silicon</subject><ispartof>Applied physics letters, 2016-10, Vol.109 (14)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-340e6cd76037c8b021c57602a5c79c384b6a9b3d006e9e96dbd33c14f36824113</citedby><cites>FETCH-LOGICAL-c428t-340e6cd76037c8b021c57602a5c79c384b6a9b3d006e9e96dbd33c14f36824113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4963715$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Brauns, Matthias</creatorcontrib><creatorcontrib>Ridderbos, Joost</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>van der Wiel, Wilfred G.</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Zwanenburg, Floris A.</creatorcontrib><title>Highly tuneable hole quantum dots in Ge-Si core-shell nanowires</title><title>Applied physics letters</title><description>We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over the tunnel couplings and the electrochemical potential of each dot. Both single and double quantum dot configurations prove to be very stable and show excellent control over the electrostatic environment of the dots, making this system a highly versatile platform for spin-based quantum computing.</description><subject>Applied physics</subject><subject>Couplings</subject><subject>Electrochemical potential</subject><subject>Electrons</subject><subject>Germanium</subject><subject>Nanowires</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Silicon</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0EFLwzAUB_AgCs7pwW9Q8KSQmZeXpu1JZOgmDDyo55Cmqe3omi1JlX17Kxt49_Ief_jxHvwJuQY2AybxHmaikJhBekImwLKMIkB-SiaMMaSySOGcXISwHmPKESfkYdl-Nt0-iUNvddnZpHHj2A26j8MmqVwMSdsnC0vf2sQ4b2lobNclve7dd-ttuCRnte6CvTruKfl4fnqfL-nqdfEyf1xRI3geKQpmpakyyTAzeck4mHQMXKcmKwzmopS6KLFiTNrCFrIqK0QDokaZcwGAU3JzuLv1bjfYENXaDb4fXyoOHNJcFFyO6vagjHcheFurrW832u8VMPXbjwJ17Ge0dwcbTBt1bF3_P_zl_B9U26rGH94ncXI</recordid><startdate>20161003</startdate><enddate>20161003</enddate><creator>Brauns, Matthias</creator><creator>Ridderbos, Joost</creator><creator>Li, Ang</creator><creator>van der Wiel, Wilfred G.</creator><creator>Bakkers, Erik P. A. M.</creator><creator>Zwanenburg, Floris A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161003</creationdate><title>Highly tuneable hole quantum dots in Ge-Si core-shell nanowires</title><author>Brauns, Matthias ; Ridderbos, Joost ; Li, Ang ; van der Wiel, Wilfred G. ; Bakkers, Erik P. A. M. ; Zwanenburg, Floris A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-340e6cd76037c8b021c57602a5c79c384b6a9b3d006e9e96dbd33c14f36824113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Couplings</topic><topic>Electrochemical potential</topic><topic>Electrons</topic><topic>Germanium</topic><topic>Nanowires</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brauns, Matthias</creatorcontrib><creatorcontrib>Ridderbos, Joost</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>van der Wiel, Wilfred G.</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Zwanenburg, Floris A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brauns, Matthias</au><au>Ridderbos, Joost</au><au>Li, Ang</au><au>van der Wiel, Wilfred G.</au><au>Bakkers, Erik P. A. M.</au><au>Zwanenburg, Floris A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly tuneable hole quantum dots in Ge-Si core-shell nanowires</atitle><jtitle>Applied physics letters</jtitle><date>2016-10-03</date><risdate>2016</risdate><volume>109</volume><issue>14</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over the tunnel couplings and the electrochemical potential of each dot. Both single and double quantum dot configurations prove to be very stable and show excellent control over the electrostatic environment of the dots, making this system a highly versatile platform for spin-based quantum computing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4963715</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-10, Vol.109 (14) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4963715 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Couplings Electrochemical potential Electrons Germanium Nanowires Quantum computing Quantum dots Silicon |
title | Highly tuneable hole quantum dots in Ge-Si core-shell nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20tuneable%20hole%20quantum%20dots%20in%20Ge-Si%20core-shell%20nanowires&rft.jtitle=Applied%20physics%20letters&rft.au=Brauns,%20Matthias&rft.date=2016-10-03&rft.volume=109&rft.issue=14&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4963715&rft_dat=%3Cproquest_cross%3E2121584926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121584926&rft_id=info:pmid/&rfr_iscdi=true |