Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition

We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO2) films. We determined the TCR and thermal-hysteresis-width diagram of the V1−x−y Cr x Nb y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2016-05, Vol.6 (5), p.055012-055012-7
Hauptverfasser: Miyazaki, Kenichi, Shibuya, Keisuke, Suzuki, Megumi, Sakai, Kenichi, Fujita, Jun-ichi, Sawa, Akihito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 055012-7
container_issue 5
container_start_page 055012
container_title AIP advances
container_volume 6
creator Miyazaki, Kenichi
Shibuya, Keisuke
Suzuki, Megumi
Sakai, Kenichi
Fujita, Jun-ichi
Sawa, Akihito
description We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO2) films. We determined the TCR and thermal-hysteresis-width diagram of the V1−x−y Cr x Nb y O2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.
doi_str_mv 10.1063/1.4949757
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4949757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_096028ff29aa41b09960a13241978566</doaj_id><sourcerecordid>2121783603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-8cfd66e3c457915f48e03c57a182863906bad3c6f25393e0f8529773bf7ff4533</originalsourceid><addsrcrecordid>eNqdkctu1DAUhiMEElXpgjewxAqkFF8SJ2aHRlAqjcQG1tYZ57jjUWIH26mYXd-Bp-C1eJI6nQq6xhsf__rOzX9VvWb0klEp3rPLRjWqa7tn1RlnbV8LzuXzJ_HL6iKlAy2nUYz2zVn1e7OPYXLL9Oful3dhVyJiQj2EGQdyCx6GVRlc-OkGJNaNU_pAthBvkGScZoyQl4glBa11xqHPJFgSMbmUwRsk4AcyRzDZGRjHI_GB5D3GCUayP6aMD-iaU1QyYYaxTOJ8WkbIIZIcwSeXXfCvqhcWxoQXj_d59f3zp2-bL_X269X15uO2Ni2lue6NHaREYZq2U6y1TY9UmLYD1vNeCkXlDgZhpOWtUAKp7Vuuuk7sbGdt0wpxXl2f6g4BDnqOboJ41AGcfhBCvNEQyzYjaqok5b21XAE0bEdVeQMTvGGq61spS603p1ohZaeTcRnN3gTv0WRd_GBMqifUHMOPBVPWh7BEX5bUnHHW9ULSda63J8rEkFJE-3c2RvVqv2b60f7Cvjuxa0tYf-__4NsQ_4F6Hqy4B1BzwVM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121783603</pqid></control><display><type>article</type><title>Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Miyazaki, Kenichi ; Shibuya, Keisuke ; Suzuki, Megumi ; Sakai, Kenichi ; Fujita, Jun-ichi ; Sawa, Akihito</creator><creatorcontrib>Miyazaki, Kenichi ; Shibuya, Keisuke ; Suzuki, Megumi ; Sakai, Kenichi ; Fujita, Jun-ichi ; Sawa, Akihito</creatorcontrib><description>We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO2) films. We determined the TCR and thermal-hysteresis-width diagram of the V1−x−y Cr x Nb y O2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4949757</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>BOLOMETERS ; BUFFERS ; Chromium ; CHROMIUM ADDITIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DOPED MATERIALS ; Doping ; ELECTRIC CONDUCTIVITY ; HYSTERESIS ; Metal-insulator transition ; Niobium ; NIOBIUM ADDITIONS ; PHASE TRANSFORMATIONS ; Silicon dioxide ; SILICON OXIDES ; Silicon substrates ; SUBSTRATES ; Temperature ; TEMPERATURE COEFFICIENT ; Thermal resistance ; Titanium dioxide ; TITANIUM OXIDES ; Vanadium dioxide ; VANADIUM OXIDES</subject><ispartof>AIP advances, 2016-05, Vol.6 (5), p.055012-055012-7</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-8cfd66e3c457915f48e03c57a182863906bad3c6f25393e0f8529773bf7ff4533</citedby><cites>FETCH-LOGICAL-c500t-8cfd66e3c457915f48e03c57a182863906bad3c6f25393e0f8529773bf7ff4533</cites><orcidid>0000-0003-3308-8822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,862,883,2098,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22611696$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miyazaki, Kenichi</creatorcontrib><creatorcontrib>Shibuya, Keisuke</creatorcontrib><creatorcontrib>Suzuki, Megumi</creatorcontrib><creatorcontrib>Sakai, Kenichi</creatorcontrib><creatorcontrib>Fujita, Jun-ichi</creatorcontrib><creatorcontrib>Sawa, Akihito</creatorcontrib><title>Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition</title><title>AIP advances</title><description>We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO2) films. We determined the TCR and thermal-hysteresis-width diagram of the V1−x−y Cr x Nb y O2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.</description><subject>BOLOMETERS</subject><subject>BUFFERS</subject><subject>Chromium</subject><subject>CHROMIUM ADDITIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DOPED MATERIALS</subject><subject>Doping</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>HYSTERESIS</subject><subject>Metal-insulator transition</subject><subject>Niobium</subject><subject>NIOBIUM ADDITIONS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Silicon dioxide</subject><subject>SILICON OXIDES</subject><subject>Silicon substrates</subject><subject>SUBSTRATES</subject><subject>Temperature</subject><subject>TEMPERATURE COEFFICIENT</subject><subject>Thermal resistance</subject><subject>Titanium dioxide</subject><subject>TITANIUM OXIDES</subject><subject>Vanadium dioxide</subject><subject>VANADIUM OXIDES</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkctu1DAUhiMEElXpgjewxAqkFF8SJ2aHRlAqjcQG1tYZ57jjUWIH26mYXd-Bp-C1eJI6nQq6xhsf__rOzX9VvWb0klEp3rPLRjWqa7tn1RlnbV8LzuXzJ_HL6iKlAy2nUYz2zVn1e7OPYXLL9Oful3dhVyJiQj2EGQdyCx6GVRlc-OkGJNaNU_pAthBvkGScZoyQl4glBa11xqHPJFgSMbmUwRsk4AcyRzDZGRjHI_GB5D3GCUayP6aMD-iaU1QyYYaxTOJ8WkbIIZIcwSeXXfCvqhcWxoQXj_d59f3zp2-bL_X269X15uO2Ni2lue6NHaREYZq2U6y1TY9UmLYD1vNeCkXlDgZhpOWtUAKp7Vuuuk7sbGdt0wpxXl2f6g4BDnqOboJ41AGcfhBCvNEQyzYjaqok5b21XAE0bEdVeQMTvGGq61spS603p1ohZaeTcRnN3gTv0WRd_GBMqifUHMOPBVPWh7BEX5bUnHHW9ULSda63J8rEkFJE-3c2RvVqv2b60f7Cvjuxa0tYf-__4NsQ_4F6Hqy4B1BzwVM</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Miyazaki, Kenichi</creator><creator>Shibuya, Keisuke</creator><creator>Suzuki, Megumi</creator><creator>Sakai, Kenichi</creator><creator>Fujita, Jun-ichi</creator><creator>Sawa, Akihito</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3308-8822</orcidid></search><sort><creationdate>20160501</creationdate><title>Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition</title><author>Miyazaki, Kenichi ; Shibuya, Keisuke ; Suzuki, Megumi ; Sakai, Kenichi ; Fujita, Jun-ichi ; Sawa, Akihito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-8cfd66e3c457915f48e03c57a182863906bad3c6f25393e0f8529773bf7ff4533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>BOLOMETERS</topic><topic>BUFFERS</topic><topic>Chromium</topic><topic>CHROMIUM ADDITIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DOPED MATERIALS</topic><topic>Doping</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>HYSTERESIS</topic><topic>Metal-insulator transition</topic><topic>Niobium</topic><topic>NIOBIUM ADDITIONS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Silicon dioxide</topic><topic>SILICON OXIDES</topic><topic>Silicon substrates</topic><topic>SUBSTRATES</topic><topic>Temperature</topic><topic>TEMPERATURE COEFFICIENT</topic><topic>Thermal resistance</topic><topic>Titanium dioxide</topic><topic>TITANIUM OXIDES</topic><topic>Vanadium dioxide</topic><topic>VANADIUM OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyazaki, Kenichi</creatorcontrib><creatorcontrib>Shibuya, Keisuke</creatorcontrib><creatorcontrib>Suzuki, Megumi</creatorcontrib><creatorcontrib>Sakai, Kenichi</creatorcontrib><creatorcontrib>Fujita, Jun-ichi</creatorcontrib><creatorcontrib>Sawa, Akihito</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyazaki, Kenichi</au><au>Shibuya, Keisuke</au><au>Suzuki, Megumi</au><au>Sakai, Kenichi</au><au>Fujita, Jun-ichi</au><au>Sawa, Akihito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition</atitle><jtitle>AIP advances</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>6</volume><issue>5</issue><spage>055012</spage><epage>055012-7</epage><pages>055012-055012-7</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO2) films. We determined the TCR and thermal-hysteresis-width diagram of the V1−x−y Cr x Nb y O2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4949757</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3308-8822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2016-05, Vol.6 (5), p.055012-055012-7
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_1_4949757
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects BOLOMETERS
BUFFERS
Chromium
CHROMIUM ADDITIONS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DOPED MATERIALS
Doping
ELECTRIC CONDUCTIVITY
HYSTERESIS
Metal-insulator transition
Niobium
NIOBIUM ADDITIONS
PHASE TRANSFORMATIONS
Silicon dioxide
SILICON OXIDES
Silicon substrates
SUBSTRATES
Temperature
TEMPERATURE COEFFICIENT
Thermal resistance
Titanium dioxide
TITANIUM OXIDES
Vanadium dioxide
VANADIUM OXIDES
title Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromium%E2%80%93niobium%20co-doped%20vanadium%20dioxide%20films:%20Large%20temperature%20coefficient%20of%20resistance%20and%20practically%20no%20thermal%20hysteresis%20of%20the%20metal%E2%80%93insulator%20transition&rft.jtitle=AIP%20advances&rft.au=Miyazaki,%20Kenichi&rft.date=2016-05-01&rft.volume=6&rft.issue=5&rft.spage=055012&rft.epage=055012-7&rft.pages=055012-055012-7&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4949757&rft_dat=%3Cproquest_cross%3E2121783603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121783603&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_096028ff29aa41b09960a13241978566&rfr_iscdi=true