G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics
In this work, we develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector, captured at sampling rates approaching the intrinsic photodiode limit. The data...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2016-05, Vol.108 (19) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 108 |
creator | Collins, Liam Belianinov, Alex Proksch, Roger Zuo, Tingting Zhang, Yong Liaw, Peter K. Kalinin, Sergei V. Jesse, Stephen |
description | In this work, we develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector, captured at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Here, G-Mode MFM is implemented and compared to the traditional heterodyne-based MFM on model systems, including domain structures in ferromagnetic Yttrium Iron Garnet and the electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstrate its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode-coupling phenomena. Finally, we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any atomic force microscopy platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties, as well as their mutual interactions. |
doi_str_mv | 10.1063/1.4948601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4948601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121784565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-d2d1c1caf4b7c063fa7594be17691f4673efc0b1a77567b33c6e19478b8c8b303</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgCs7pwX9Q9KTQma9JmtabDJ3CwIN6Dmmazoy1qUkm7N-b0uEOgqfwhYcvb16ELgHPAOfkDma0pEWO4QhNAHOeEoDiGE0wxiTNSwan6Mz7dRxZRsgEtYu0tbVOWrnqdDAqaaxTcTTKWa9sv7tP3nQvnQymWx2U7OpEb7QKUQU53JguaCdVMLbzydYPujKrpJZBRi03u4j8OTpp5Mbri_05RR9Pj-_z53T5uniZPyxTRRkLaZ3VoEDJhlZcxV81krOSVhp4XkJDc050o3AFknOW84oQlWsoKS-qQhUVwWSKrsa9MZ0RXpmg1aeyXRcTC8gYLzGN6HpEvbNfW-2DWNuti1G9yCADXlCWs6huRjUU4p1uRO9MK91OABZD5QLEvvJob0c7vCiHKn7xt3UHKPq6-Q__3fwDOFCP_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121784565</pqid></control><display><type>article</type><title>G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Collins, Liam ; Belianinov, Alex ; Proksch, Roger ; Zuo, Tingting ; Zhang, Yong ; Liaw, Peter K. ; Kalinin, Sergei V. ; Jesse, Stephen</creator><creatorcontrib>Collins, Liam ; Belianinov, Alex ; Proksch, Roger ; Zuo, Tingting ; Zhang, Yong ; Liaw, Peter K. ; Kalinin, Sergei V. ; Jesse, Stephen ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>In this work, we develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector, captured at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Here, G-Mode MFM is implemented and compared to the traditional heterodyne-based MFM on model systems, including domain structures in ferromagnetic Yttrium Iron Garnet and the electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstrate its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode-coupling phenomena. Finally, we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any atomic force microscopy platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties, as well as their mutual interactions.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4948601</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Analytics ; Applied physics ; Atomic force microscopy ; Data management ; Data storage ; Ferromagnetism ; Frequency response ; High entropy alloys ; Information theory ; Magnetic fields ; Magnetic force microscopy ; Material properties ; MATERIALS SCIENCE ; Microscopy ; Noise reduction ; Photodiodes ; Yttrium ; Yttrium-iron garnet</subject><ispartof>Applied physics letters, 2016-05, Vol.108 (19)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-d2d1c1caf4b7c063fa7594be17691f4673efc0b1a77567b33c6e19478b8c8b303</citedby><cites>FETCH-LOGICAL-c455t-d2d1c1caf4b7c063fa7594be17691f4673efc0b1a77567b33c6e19478b8c8b303</cites><orcidid>0000-0002-6355-9923 ; 0000-0001-5354-6152 ; 0000000153546152 ; 0000000263559923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4948601$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1257904$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Collins, Liam</creatorcontrib><creatorcontrib>Belianinov, Alex</creatorcontrib><creatorcontrib>Proksch, Roger</creatorcontrib><creatorcontrib>Zuo, Tingting</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Liaw, Peter K.</creatorcontrib><creatorcontrib>Kalinin, Sergei V.</creatorcontrib><creatorcontrib>Jesse, Stephen</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics</title><title>Applied physics letters</title><description>In this work, we develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector, captured at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Here, G-Mode MFM is implemented and compared to the traditional heterodyne-based MFM on model systems, including domain structures in ferromagnetic Yttrium Iron Garnet and the electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstrate its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode-coupling phenomena. Finally, we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any atomic force microscopy platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties, as well as their mutual interactions.</description><subject>Analytics</subject><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Data management</subject><subject>Data storage</subject><subject>Ferromagnetism</subject><subject>Frequency response</subject><subject>High entropy alloys</subject><subject>Information theory</subject><subject>Magnetic fields</subject><subject>Magnetic force microscopy</subject><subject>Material properties</subject><subject>MATERIALS SCIENCE</subject><subject>Microscopy</subject><subject>Noise reduction</subject><subject>Photodiodes</subject><subject>Yttrium</subject><subject>Yttrium-iron garnet</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAYBuAgCs7pwX9Q9KTQma9JmtabDJ3CwIN6Dmmazoy1qUkm7N-b0uEOgqfwhYcvb16ELgHPAOfkDma0pEWO4QhNAHOeEoDiGE0wxiTNSwan6Mz7dRxZRsgEtYu0tbVOWrnqdDAqaaxTcTTKWa9sv7tP3nQvnQymWx2U7OpEb7QKUQU53JguaCdVMLbzydYPujKrpJZBRi03u4j8OTpp5Mbri_05RR9Pj-_z53T5uniZPyxTRRkLaZ3VoEDJhlZcxV81krOSVhp4XkJDc050o3AFknOW84oQlWsoKS-qQhUVwWSKrsa9MZ0RXpmg1aeyXRcTC8gYLzGN6HpEvbNfW-2DWNuti1G9yCADXlCWs6huRjUU4p1uRO9MK91OABZD5QLEvvJob0c7vCiHKn7xt3UHKPq6-Q__3fwDOFCP_A</recordid><startdate>20160509</startdate><enddate>20160509</enddate><creator>Collins, Liam</creator><creator>Belianinov, Alex</creator><creator>Proksch, Roger</creator><creator>Zuo, Tingting</creator><creator>Zhang, Yong</creator><creator>Liaw, Peter K.</creator><creator>Kalinin, Sergei V.</creator><creator>Jesse, Stephen</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6355-9923</orcidid><orcidid>https://orcid.org/0000-0001-5354-6152</orcidid><orcidid>https://orcid.org/0000000153546152</orcidid><orcidid>https://orcid.org/0000000263559923</orcidid></search><sort><creationdate>20160509</creationdate><title>G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics</title><author>Collins, Liam ; Belianinov, Alex ; Proksch, Roger ; Zuo, Tingting ; Zhang, Yong ; Liaw, Peter K. ; Kalinin, Sergei V. ; Jesse, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-d2d1c1caf4b7c063fa7594be17691f4673efc0b1a77567b33c6e19478b8c8b303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytics</topic><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Data management</topic><topic>Data storage</topic><topic>Ferromagnetism</topic><topic>Frequency response</topic><topic>High entropy alloys</topic><topic>Information theory</topic><topic>Magnetic fields</topic><topic>Magnetic force microscopy</topic><topic>Material properties</topic><topic>MATERIALS SCIENCE</topic><topic>Microscopy</topic><topic>Noise reduction</topic><topic>Photodiodes</topic><topic>Yttrium</topic><topic>Yttrium-iron garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Liam</creatorcontrib><creatorcontrib>Belianinov, Alex</creatorcontrib><creatorcontrib>Proksch, Roger</creatorcontrib><creatorcontrib>Zuo, Tingting</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Liaw, Peter K.</creatorcontrib><creatorcontrib>Kalinin, Sergei V.</creatorcontrib><creatorcontrib>Jesse, Stephen</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Liam</au><au>Belianinov, Alex</au><au>Proksch, Roger</au><au>Zuo, Tingting</au><au>Zhang, Yong</au><au>Liaw, Peter K.</au><au>Kalinin, Sergei V.</au><au>Jesse, Stephen</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics</atitle><jtitle>Applied physics letters</jtitle><date>2016-05-09</date><risdate>2016</risdate><volume>108</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this work, we develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector, captured at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Here, G-Mode MFM is implemented and compared to the traditional heterodyne-based MFM on model systems, including domain structures in ferromagnetic Yttrium Iron Garnet and the electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstrate its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode-coupling phenomena. Finally, we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any atomic force microscopy platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties, as well as their mutual interactions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4948601</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6355-9923</orcidid><orcidid>https://orcid.org/0000-0001-5354-6152</orcidid><orcidid>https://orcid.org/0000000153546152</orcidid><orcidid>https://orcid.org/0000000263559923</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-05, Vol.108 (19) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4948601 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Analytics Applied physics Atomic force microscopy Data management Data storage Ferromagnetism Frequency response High entropy alloys Information theory Magnetic fields Magnetic force microscopy Material properties MATERIALS SCIENCE Microscopy Noise reduction Photodiodes Yttrium Yttrium-iron garnet |
title | G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G-mode%20magnetic%20force%20microscopy:%20Separating%20magnetic%20and%20electrostatic%20interactions%20using%20big%20data%20analytics&rft.jtitle=Applied%20physics%20letters&rft.au=Collins,%20Liam&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2016-05-09&rft.volume=108&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4948601&rft_dat=%3Cproquest_cross%3E2121784565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121784565&rft_id=info:pmid/&rfr_iscdi=true |