Selective particle capture by asynchronously beating cilia

Selective particle filtration is fundamental in many engineering and biological systems. For example, many aquatic microorganisms use filter feeding to capture food particles from the surrounding fluid, using motile cilia. One of the capture strategies is to use the same cilia to generate feeding cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2015-12, Vol.27 (12)
Hauptverfasser: Ding, Yang, Kanso, Eva
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physics of fluids (1994)
container_volume 27
creator Ding, Yang
Kanso, Eva
description Selective particle filtration is fundamental in many engineering and biological systems. For example, many aquatic microorganisms use filter feeding to capture food particles from the surrounding fluid, using motile cilia. One of the capture strategies is to use the same cilia to generate feeding currents and to intercept particles when the particles are on the downstream side of the cilia. Here, we develop a 3D computational model of ciliary bands interacting with flow suspended particles and calculate particle trajectories for a range of particle sizes. Consistent with experimental observations, we find optimal particle sizes that maximize capture rate. The optimal size depends nonlinearly on cilia spacing and cilia coordination, synchronous vs. asynchronous. These parameters affect the cilia-generated flow field, which in turn affects particle trajectories. The low capture rate of smaller particles is due to the particles’ inability to cross the flow streamlines of neighboring cilia. Meanwhile, large particles have difficulty entering the sub-ciliary region once advected downstream, also resulting in low capture rates. The optimal range of particle sizes is enhanced when cilia beat asynchronously. These findings have potentially important implications on the design and use of biomimetic cilia in processes such as particle sorting in microfluidic devices.
doi_str_mv 10.1063/1.4938558
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4938558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_4938558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-3b6e5fb50b0f96abfdbe4c6622eab56588966c47ae67f1cd3b3c89f7d79f8ff73</originalsourceid><addsrcrecordid>eNp9z8FKAzEUBdAgCtbqwj_IVmFq0kxeEndSrAoFF-o6JJlEI-PMkKSF-XtbWnQhuHpvcbjci9AlJTNKgN3QWa2Y5FweoQklUlUCAI53vyAVAKOn6CznT0IIU3OYoNsX33pX4sbjwaQSXeuxM0NZJ4_tiE0eO_eR-q5f53bE1psSu3fsYhvNOToJps3-4nCn6G15_7p4rFbPD0-Lu1XlGKtLxSx4HiwnlgQFxobG-toBzOfeWA5cSgXgamE8iEBdwyxzUgXRCBVkCIJN0dU-16U-5-SDHlL8MmnUlOjdaE31YfTWXu9tdrFsu_bdD9706RfqoQn_4b_J3y2AZvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Selective particle capture by asynchronously beating cilia</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ding, Yang ; Kanso, Eva</creator><creatorcontrib>Ding, Yang ; Kanso, Eva</creatorcontrib><description>Selective particle filtration is fundamental in many engineering and biological systems. For example, many aquatic microorganisms use filter feeding to capture food particles from the surrounding fluid, using motile cilia. One of the capture strategies is to use the same cilia to generate feeding currents and to intercept particles when the particles are on the downstream side of the cilia. Here, we develop a 3D computational model of ciliary bands interacting with flow suspended particles and calculate particle trajectories for a range of particle sizes. Consistent with experimental observations, we find optimal particle sizes that maximize capture rate. The optimal size depends nonlinearly on cilia spacing and cilia coordination, synchronous vs. asynchronous. These parameters affect the cilia-generated flow field, which in turn affects particle trajectories. The low capture rate of smaller particles is due to the particles’ inability to cross the flow streamlines of neighboring cilia. Meanwhile, large particles have difficulty entering the sub-ciliary region once advected downstream, also resulting in low capture rates. The optimal range of particle sizes is enhanced when cilia beat asynchronously. These findings have potentially important implications on the design and use of biomimetic cilia in processes such as particle sorting in microfluidic devices.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4938558</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><ispartof>Physics of fluids (1994), 2015-12, Vol.27 (12)</ispartof><rights>AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-3b6e5fb50b0f96abfdbe4c6622eab56588966c47ae67f1cd3b3c89f7d79f8ff73</citedby><cites>FETCH-LOGICAL-c334t-3b6e5fb50b0f96abfdbe4c6622eab56588966c47ae67f1cd3b3c89f7d79f8ff73</cites><orcidid>0000-0002-8252-2421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Ding, Yang</creatorcontrib><creatorcontrib>Kanso, Eva</creatorcontrib><title>Selective particle capture by asynchronously beating cilia</title><title>Physics of fluids (1994)</title><description>Selective particle filtration is fundamental in many engineering and biological systems. For example, many aquatic microorganisms use filter feeding to capture food particles from the surrounding fluid, using motile cilia. One of the capture strategies is to use the same cilia to generate feeding currents and to intercept particles when the particles are on the downstream side of the cilia. Here, we develop a 3D computational model of ciliary bands interacting with flow suspended particles and calculate particle trajectories for a range of particle sizes. Consistent with experimental observations, we find optimal particle sizes that maximize capture rate. The optimal size depends nonlinearly on cilia spacing and cilia coordination, synchronous vs. asynchronous. These parameters affect the cilia-generated flow field, which in turn affects particle trajectories. The low capture rate of smaller particles is due to the particles’ inability to cross the flow streamlines of neighboring cilia. Meanwhile, large particles have difficulty entering the sub-ciliary region once advected downstream, also resulting in low capture rates. The optimal range of particle sizes is enhanced when cilia beat asynchronously. These findings have potentially important implications on the design and use of biomimetic cilia in processes such as particle sorting in microfluidic devices.</description><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9z8FKAzEUBdAgCtbqwj_IVmFq0kxeEndSrAoFF-o6JJlEI-PMkKSF-XtbWnQhuHpvcbjci9AlJTNKgN3QWa2Y5FweoQklUlUCAI53vyAVAKOn6CznT0IIU3OYoNsX33pX4sbjwaQSXeuxM0NZJ4_tiE0eO_eR-q5f53bE1psSu3fsYhvNOToJps3-4nCn6G15_7p4rFbPD0-Lu1XlGKtLxSx4HiwnlgQFxobG-toBzOfeWA5cSgXgamE8iEBdwyxzUgXRCBVkCIJN0dU-16U-5-SDHlL8MmnUlOjdaE31YfTWXu9tdrFsu_bdD9706RfqoQn_4b_J3y2AZvA</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Ding, Yang</creator><creator>Kanso, Eva</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8252-2421</orcidid></search><sort><creationdate>201512</creationdate><title>Selective particle capture by asynchronously beating cilia</title><author>Ding, Yang ; Kanso, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-3b6e5fb50b0f96abfdbe4c6622eab56588966c47ae67f1cd3b3c89f7d79f8ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yang</creatorcontrib><creatorcontrib>Kanso, Eva</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yang</au><au>Kanso, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective particle capture by asynchronously beating cilia</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2015-12</date><risdate>2015</risdate><volume>27</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Selective particle filtration is fundamental in many engineering and biological systems. For example, many aquatic microorganisms use filter feeding to capture food particles from the surrounding fluid, using motile cilia. One of the capture strategies is to use the same cilia to generate feeding currents and to intercept particles when the particles are on the downstream side of the cilia. Here, we develop a 3D computational model of ciliary bands interacting with flow suspended particles and calculate particle trajectories for a range of particle sizes. Consistent with experimental observations, we find optimal particle sizes that maximize capture rate. The optimal size depends nonlinearly on cilia spacing and cilia coordination, synchronous vs. asynchronous. These parameters affect the cilia-generated flow field, which in turn affects particle trajectories. The low capture rate of smaller particles is due to the particles’ inability to cross the flow streamlines of neighboring cilia. Meanwhile, large particles have difficulty entering the sub-ciliary region once advected downstream, also resulting in low capture rates. The optimal range of particle sizes is enhanced when cilia beat asynchronously. These findings have potentially important implications on the design and use of biomimetic cilia in processes such as particle sorting in microfluidic devices.</abstract><doi>10.1063/1.4938558</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8252-2421</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2015-12, Vol.27 (12)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_4938558
source AIP Journals Complete; Alma/SFX Local Collection
title Selective particle capture by asynchronously beating cilia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20particle%20capture%20by%20asynchronously%20beating%20cilia&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Ding,%20Yang&rft.date=2015-12&rft.volume=27&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.4938558&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_4938558%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true