Multiple solutions for a class of quasilinear Schrödinger equations in ℝ N

In this work, we study the existence of multiple solutions to a class of quasilinear Schrödinger equation −Δpu+V(x)up−2u−Δp(u2α)u2α−2u=g(u),x∈RN, where Δpu=div(∇up−2∇u) is the p − Laplacian operator and p ∈ [2α, N], α>12 is a parameter. The potential V ∈ C(ℝN) is positive and bounded in ℝN. g(u)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2015-07, Vol.56 (7)
1. Verfasser: Chen, Caisheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of mathematical physics
container_volume 56
creator Chen, Caisheng
description In this work, we study the existence of multiple solutions to a class of quasilinear Schrödinger equation −Δpu+V(x)up−2u−Δp(u2α)u2α−2u=g(u),x∈RN, where Δpu=div(∇up−2∇u) is the p − Laplacian operator and p ∈ [2α, N], α>12 is a parameter. The potential V ∈ C(ℝN) is positive and bounded in ℝN. g(u) is odd and continuous. Using symmetric mountain pass lemma, we obtain infinitely many solutions to Schrödinger equation.
doi_str_mv 10.1063/1.4927254
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4927254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4927254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c159t-4d362cb58b4a8e8f9042db3b2d90eb444d5aee435fd60cd48b3e32aae77bca743</originalsourceid><addsrcrecordid>eNotkDtOxDAURS0EEmGgYAduKTL485w4JRoBgzQDBVBH_ryAkUkGOyno2QbbYAPshJUAmqlOcXVucQg55WzOWSXP-RwaUQsFe6TgTDdlXSm9TwrGhCgFaH1IjnJ-YYxzDVCQ9XqKY9hEpHmI0xiGPtNuSNRQF03OdOjo22RyiKFHk-i9e07fXz70T5go_i1bI_T05-OT3h6Tg87EjCc7zsjj1eXDYlmu7q5vFher0nHVjCV4WQlnlbZgNOquYSC8lVb4hqEFAK8MIkjV-Yo5D9pKlMIYrGvrTA1yRs62vy4NOSfs2k0Krya9t5y1_x1a3u46yF_8-FI2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple solutions for a class of quasilinear Schrödinger equations in ℝ N</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Caisheng</creator><creatorcontrib>Chen, Caisheng</creatorcontrib><description>In this work, we study the existence of multiple solutions to a class of quasilinear Schrödinger equation −Δpu+V(x)up−2u−Δp(u2α)u2α−2u=g(u),x∈RN, where Δpu=div(∇up−2∇u) is the p − Laplacian operator and p ∈ [2α, N], α&gt;12 is a parameter. The potential V ∈ C(ℝN) is positive and bounded in ℝN. g(u) is odd and continuous. Using symmetric mountain pass lemma, we obtain infinitely many solutions to Schrödinger equation.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4927254</identifier><language>eng</language><ispartof>Journal of mathematical physics, 2015-07, Vol.56 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c159t-4d362cb58b4a8e8f9042db3b2d90eb444d5aee435fd60cd48b3e32aae77bca743</citedby><cites>FETCH-LOGICAL-c159t-4d362cb58b4a8e8f9042db3b2d90eb444d5aee435fd60cd48b3e32aae77bca743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Caisheng</creatorcontrib><title>Multiple solutions for a class of quasilinear Schrödinger equations in ℝ N</title><title>Journal of mathematical physics</title><description>In this work, we study the existence of multiple solutions to a class of quasilinear Schrödinger equation −Δpu+V(x)up−2u−Δp(u2α)u2α−2u=g(u),x∈RN, where Δpu=div(∇up−2∇u) is the p − Laplacian operator and p ∈ [2α, N], α&gt;12 is a parameter. The potential V ∈ C(ℝN) is positive and bounded in ℝN. g(u) is odd and continuous. Using symmetric mountain pass lemma, we obtain infinitely many solutions to Schrödinger equation.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkDtOxDAURS0EEmGgYAduKTL485w4JRoBgzQDBVBH_ryAkUkGOyno2QbbYAPshJUAmqlOcXVucQg55WzOWSXP-RwaUQsFe6TgTDdlXSm9TwrGhCgFaH1IjnJ-YYxzDVCQ9XqKY9hEpHmI0xiGPtNuSNRQF03OdOjo22RyiKFHk-i9e07fXz70T5go_i1bI_T05-OT3h6Tg87EjCc7zsjj1eXDYlmu7q5vFher0nHVjCV4WQlnlbZgNOquYSC8lVb4hqEFAK8MIkjV-Yo5D9pKlMIYrGvrTA1yRs62vy4NOSfs2k0Krya9t5y1_x1a3u46yF_8-FI2</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Chen, Caisheng</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>Multiple solutions for a class of quasilinear Schrödinger equations in ℝ N</title><author>Chen, Caisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c159t-4d362cb58b4a8e8f9042db3b2d90eb444d5aee435fd60cd48b3e32aae77bca743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Caisheng</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Caisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple solutions for a class of quasilinear Schrödinger equations in ℝ N</atitle><jtitle>Journal of mathematical physics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>56</volume><issue>7</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>In this work, we study the existence of multiple solutions to a class of quasilinear Schrödinger equation −Δpu+V(x)up−2u−Δp(u2α)u2α−2u=g(u),x∈RN, where Δpu=div(∇up−2∇u) is the p − Laplacian operator and p ∈ [2α, N], α&gt;12 is a parameter. The potential V ∈ C(ℝN) is positive and bounded in ℝN. g(u) is odd and continuous. Using symmetric mountain pass lemma, we obtain infinitely many solutions to Schrödinger equation.</abstract><doi>10.1063/1.4927254</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2015-07, Vol.56 (7)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_4927254
source AIP Journals Complete; Alma/SFX Local Collection
title Multiple solutions for a class of quasilinear Schrödinger equations in ℝ N
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20solutions%20for%20a%20class%20of%20quasilinear%20Schr%C3%B6dinger%20equations%20in%20%E2%84%9D%20N&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Chen,%20Caisheng&rft.date=2015-07-01&rft.volume=56&rft.issue=7&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4927254&rft_dat=%3Ccrossref%3E10_1063_1_4927254%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true