Interface mechanics of adhesiveless microtransfer printing processes

Microtransfer printing is a versatile process for retrieving, transferring, and placing nanomembranes of various materials on a diverse set of substrates. The process relies on the ability to preferentially propagate a crack along specific interfaces at different stages in the process. Here, we repo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-04, Vol.115 (14)
Hauptverfasser: Kim-Lee, H.-J., Carlson, A., Grierson, D. S., Rogers, J. A., Turner, K. T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Journal of applied physics
container_volume 115
creator Kim-Lee, H.-J.
Carlson, A.
Grierson, D. S.
Rogers, J. A.
Turner, K. T.
description Microtransfer printing is a versatile process for retrieving, transferring, and placing nanomembranes of various materials on a diverse set of substrates. The process relies on the ability to preferentially propagate a crack along specific interfaces at different stages in the process. Here, we report a mechanics-based model that examines the factors that determine which interface a crack will propagate along in microtransfer printing with a soft elastomer stamp. The model is described and validated through comparison to experimental measurements. The effects of various factors, including interface toughness, stamp geometry, flaw sizes at the interfaces, and nanomembrane thickness, on the effectiveness of transfer printing are investigated using a fracture-mechanics framework and finite element modeling. The modeling results agree with experimental measurements in which the effects of interface toughness and nanomembranes thickness on the transfer printing yield were examined. The models presented can be used to guide the design of transfer printing processes.
doi_str_mv 10.1063/1.4870873
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4870873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4870873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-6917be4c9f8c2f8e1de51093b2bb1792d20cab2a11b6d8c6984a7d4daaa3c4793</originalsourceid><addsrcrecordid>eNotj8FKxDAURYMoWEcX_kG3Ljq-l7RNspRRx4EBN7ouL8mLU5m2khTBv7firO6FC5dzhLhFWCO06h7XtdFgtDoTBYKxlW4aOBcFgMTKWG0vxVXOnwCIRtlCPO7GmVMkz-XA_kBj73M5xZLCgXP_zUfOuRx6n6Y50Zgjp_Ir9ePcjx9Lmfwyc74WF5GOmW9OuRLvz09vm5dq_7rdbR72lVcK5qq1qB3X3kbjZTSMgRsEq5x0DrWVQYInJwnRtcH41pqadKgDESlfa6tW4u7_d8HJOXHsFpaB0k-H0P3pd9id9NUvVsROFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interface mechanics of adhesiveless microtransfer printing processes</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim-Lee, H.-J. ; Carlson, A. ; Grierson, D. S. ; Rogers, J. A. ; Turner, K. T.</creator><creatorcontrib>Kim-Lee, H.-J. ; Carlson, A. ; Grierson, D. S. ; Rogers, J. A. ; Turner, K. T.</creatorcontrib><description>Microtransfer printing is a versatile process for retrieving, transferring, and placing nanomembranes of various materials on a diverse set of substrates. The process relies on the ability to preferentially propagate a crack along specific interfaces at different stages in the process. Here, we report a mechanics-based model that examines the factors that determine which interface a crack will propagate along in microtransfer printing with a soft elastomer stamp. The model is described and validated through comparison to experimental measurements. The effects of various factors, including interface toughness, stamp geometry, flaw sizes at the interfaces, and nanomembrane thickness, on the effectiveness of transfer printing are investigated using a fracture-mechanics framework and finite element modeling. The modeling results agree with experimental measurements in which the effects of interface toughness and nanomembranes thickness on the transfer printing yield were examined. The models presented can be used to guide the design of transfer printing processes.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4870873</identifier><language>eng</language><ispartof>Journal of applied physics, 2014-04, Vol.115 (14)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-6917be4c9f8c2f8e1de51093b2bb1792d20cab2a11b6d8c6984a7d4daaa3c4793</citedby><cites>FETCH-LOGICAL-c330t-6917be4c9f8c2f8e1de51093b2bb1792d20cab2a11b6d8c6984a7d4daaa3c4793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim-Lee, H.-J.</creatorcontrib><creatorcontrib>Carlson, A.</creatorcontrib><creatorcontrib>Grierson, D. S.</creatorcontrib><creatorcontrib>Rogers, J. A.</creatorcontrib><creatorcontrib>Turner, K. T.</creatorcontrib><title>Interface mechanics of adhesiveless microtransfer printing processes</title><title>Journal of applied physics</title><description>Microtransfer printing is a versatile process for retrieving, transferring, and placing nanomembranes of various materials on a diverse set of substrates. The process relies on the ability to preferentially propagate a crack along specific interfaces at different stages in the process. Here, we report a mechanics-based model that examines the factors that determine which interface a crack will propagate along in microtransfer printing with a soft elastomer stamp. The model is described and validated through comparison to experimental measurements. The effects of various factors, including interface toughness, stamp geometry, flaw sizes at the interfaces, and nanomembrane thickness, on the effectiveness of transfer printing are investigated using a fracture-mechanics framework and finite element modeling. The modeling results agree with experimental measurements in which the effects of interface toughness and nanomembranes thickness on the transfer printing yield were examined. The models presented can be used to guide the design of transfer printing processes.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotj8FKxDAURYMoWEcX_kG3Ljq-l7RNspRRx4EBN7ouL8mLU5m2khTBv7firO6FC5dzhLhFWCO06h7XtdFgtDoTBYKxlW4aOBcFgMTKWG0vxVXOnwCIRtlCPO7GmVMkz-XA_kBj73M5xZLCgXP_zUfOuRx6n6Y50Zgjp_Ir9ePcjx9Lmfwyc74WF5GOmW9OuRLvz09vm5dq_7rdbR72lVcK5qq1qB3X3kbjZTSMgRsEq5x0DrWVQYInJwnRtcH41pqadKgDESlfa6tW4u7_d8HJOXHsFpaB0k-H0P3pd9id9NUvVsROFw</recordid><startdate>20140414</startdate><enddate>20140414</enddate><creator>Kim-Lee, H.-J.</creator><creator>Carlson, A.</creator><creator>Grierson, D. S.</creator><creator>Rogers, J. A.</creator><creator>Turner, K. T.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140414</creationdate><title>Interface mechanics of adhesiveless microtransfer printing processes</title><author>Kim-Lee, H.-J. ; Carlson, A. ; Grierson, D. S. ; Rogers, J. A. ; Turner, K. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-6917be4c9f8c2f8e1de51093b2bb1792d20cab2a11b6d8c6984a7d4daaa3c4793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim-Lee, H.-J.</creatorcontrib><creatorcontrib>Carlson, A.</creatorcontrib><creatorcontrib>Grierson, D. S.</creatorcontrib><creatorcontrib>Rogers, J. A.</creatorcontrib><creatorcontrib>Turner, K. T.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim-Lee, H.-J.</au><au>Carlson, A.</au><au>Grierson, D. S.</au><au>Rogers, J. A.</au><au>Turner, K. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface mechanics of adhesiveless microtransfer printing processes</atitle><jtitle>Journal of applied physics</jtitle><date>2014-04-14</date><risdate>2014</risdate><volume>115</volume><issue>14</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Microtransfer printing is a versatile process for retrieving, transferring, and placing nanomembranes of various materials on a diverse set of substrates. The process relies on the ability to preferentially propagate a crack along specific interfaces at different stages in the process. Here, we report a mechanics-based model that examines the factors that determine which interface a crack will propagate along in microtransfer printing with a soft elastomer stamp. The model is described and validated through comparison to experimental measurements. The effects of various factors, including interface toughness, stamp geometry, flaw sizes at the interfaces, and nanomembrane thickness, on the effectiveness of transfer printing are investigated using a fracture-mechanics framework and finite element modeling. The modeling results agree with experimental measurements in which the effects of interface toughness and nanomembranes thickness on the transfer printing yield were examined. The models presented can be used to guide the design of transfer printing processes.</abstract><doi>10.1063/1.4870873</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-04, Vol.115 (14)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_4870873
source AIP Journals Complete; Alma/SFX Local Collection
title Interface mechanics of adhesiveless microtransfer printing processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20mechanics%20of%20adhesiveless%20microtransfer%20printing%20processes&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kim-Lee,%20H.-J.&rft.date=2014-04-14&rft.volume=115&rft.issue=14&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4870873&rft_dat=%3Ccrossref%3E10_1063_1_4870873%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true