Microfluidic electrical sorting of particles based on shape in a spiral microchannel

Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomicrofluidics 2014-01, Vol.8 (1), p.014101-014101
Hauptverfasser: DuBose, John, Lu, Xinyu, Patel, Saurin, Qian, Shizhi, Woo Joo, Sang, Xuan, Xiangchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 014101
container_issue 1
container_start_page 014101
container_title Biomicrofluidics
container_volume 8
creator DuBose, John
Lu, Xinyu
Patel, Saurin
Qian, Shizhi
Woo Joo, Sang
Xuan, Xiangchun
description Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.
doi_str_mv 10.1063/1.4862355
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4862355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1518621061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</originalsourceid><addsrcrecordid>eNp9kU1LHTEYhUOpqFUX_QMl0E0tXDtJJh-zEYrYWlC60XXIJG-8kbnJNJkR-u-by71-Ql3lQB5OTs5B6CNpTkgj2Ddy0ipBGefv0D7pGF2Qhqv3z_Qe-lDKXdNwIindRXu0lZxVuY-ur4LNyQ9zcMFiGMBOOVgz4JLyFOItTh6Ppko7QMG9KeBwirgszQg4RGxwGUOu_GrtY5cmRhgO0Y43Q4Gj7XmAbn6cX59dLC5___x19v1yYTnrpoWXohemY21vG-udoqZtu164VlIJVinuwFDHGfOKGEqV5AKEV84BCCMJYQfodOM7zv0KnIU41Sh6zGFl8l-dTNAvb2JY6tt0r1knpexUNfiyNcjpzwxl0qtQLAyDiZDmogkntdja8fqtz6_QuzTnWL-nKaFSioaorlLHG6qWUUoG_xiGNHq9lSZ6u1VlPz1P_0g-jFOBrxug2DCZKaT4ptt_4fuUn0A9Os_-AZjWq6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127760189</pqid></control><display><type>article</type><title>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</title><source>American Institute of Physics</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>DuBose, John ; Lu, Xinyu ; Patel, Saurin ; Qian, Shizhi ; Woo Joo, Sang ; Xuan, Xiangchun</creator><creatorcontrib>DuBose, John ; Lu, Xinyu ; Patel, Saurin ; Qian, Shizhi ; Woo Joo, Sang ; Xuan, Xiangchun</creatorcontrib><description>Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.4862355</identifier><identifier>PMID: 24753722</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cell cycle ; Computer simulation ; Curvature ; Dielectrophoresis ; Flow paths ; Mathematical models ; Microchannels ; Organic chemistry ; Particle sorting ; Particle trajectories ; Regular ; Sheaths</subject><ispartof>Biomicrofluidics, 2014-01, Vol.8 (1), p.014101-014101</ispartof><rights>AIP Publishing LLC</rights><rights>2014 AIP Publishing LLC.</rights><rights>Copyright © 2014 AIP Publishing LLC 2014 AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</citedby><cites>FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977798/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://pubs.aip.org/bmf/article-lookup/doi/10.1063/1.4862355$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,723,776,780,790,881,4498,27901,27902,53766,53768,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24753722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DuBose, John</creatorcontrib><creatorcontrib>Lu, Xinyu</creatorcontrib><creatorcontrib>Patel, Saurin</creatorcontrib><creatorcontrib>Qian, Shizhi</creatorcontrib><creatorcontrib>Woo Joo, Sang</creatorcontrib><creatorcontrib>Xuan, Xiangchun</creatorcontrib><title>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.</description><subject>Cell cycle</subject><subject>Computer simulation</subject><subject>Curvature</subject><subject>Dielectrophoresis</subject><subject>Flow paths</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Organic chemistry</subject><subject>Particle sorting</subject><subject>Particle trajectories</subject><subject>Regular</subject><subject>Sheaths</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LHTEYhUOpqFUX_QMl0E0tXDtJJh-zEYrYWlC60XXIJG-8kbnJNJkR-u-by71-Ql3lQB5OTs5B6CNpTkgj2Ddy0ipBGefv0D7pGF2Qhqv3z_Qe-lDKXdNwIindRXu0lZxVuY-ur4LNyQ9zcMFiGMBOOVgz4JLyFOItTh6Ppko7QMG9KeBwirgszQg4RGxwGUOu_GrtY5cmRhgO0Y43Q4Gj7XmAbn6cX59dLC5___x19v1yYTnrpoWXohemY21vG-udoqZtu164VlIJVinuwFDHGfOKGEqV5AKEV84BCCMJYQfodOM7zv0KnIU41Sh6zGFl8l-dTNAvb2JY6tt0r1knpexUNfiyNcjpzwxl0qtQLAyDiZDmogkntdja8fqtz6_QuzTnWL-nKaFSioaorlLHG6qWUUoG_xiGNHq9lSZ6u1VlPz1P_0g-jFOBrxug2DCZKaT4ptt_4fuUn0A9Os_-AZjWq6g</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>DuBose, John</creator><creator>Lu, Xinyu</creator><creator>Patel, Saurin</creator><creator>Qian, Shizhi</creator><creator>Woo Joo, Sang</creator><creator>Xuan, Xiangchun</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</title><author>DuBose, John ; Lu, Xinyu ; Patel, Saurin ; Qian, Shizhi ; Woo Joo, Sang ; Xuan, Xiangchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-f76b6a934bc0cfd82a449b6d4727ec885dea2d533f81a228756e6f8ddee6a7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cell cycle</topic><topic>Computer simulation</topic><topic>Curvature</topic><topic>Dielectrophoresis</topic><topic>Flow paths</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Organic chemistry</topic><topic>Particle sorting</topic><topic>Particle trajectories</topic><topic>Regular</topic><topic>Sheaths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DuBose, John</creatorcontrib><creatorcontrib>Lu, Xinyu</creatorcontrib><creatorcontrib>Patel, Saurin</creatorcontrib><creatorcontrib>Qian, Shizhi</creatorcontrib><creatorcontrib>Woo Joo, Sang</creatorcontrib><creatorcontrib>Xuan, Xiangchun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DuBose, John</au><au>Lu, Xinyu</au><au>Patel, Saurin</au><au>Qian, Shizhi</au><au>Woo Joo, Sang</au><au>Xuan, Xiangchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic electrical sorting of particles based on shape in a spiral microchannel</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>8</volume><issue>1</issue><spage>014101</spage><epage>014101</epage><pages>014101-014101</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24753722</pmid><doi>10.1063/1.4862355</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-1058
ispartof Biomicrofluidics, 2014-01, Vol.8 (1), p.014101-014101
issn 1932-1058
1932-1058
language eng
recordid cdi_crossref_primary_10_1063_1_4862355
source American Institute of Physics; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Cell cycle
Computer simulation
Curvature
Dielectrophoresis
Flow paths
Mathematical models
Microchannels
Organic chemistry
Particle sorting
Particle trajectories
Regular
Sheaths
title Microfluidic electrical sorting of particles based on shape in a spiral microchannel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20electrical%20sorting%20of%20particles%20based%20on%20shape%20in%20a%20spiral%20microchannel&rft.jtitle=Biomicrofluidics&rft.au=DuBose,%20John&rft.date=2014-01-01&rft.volume=8&rft.issue=1&rft.spage=014101&rft.epage=014101&rft.pages=014101-014101&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/1.4862355&rft_dat=%3Cproquest_cross%3E1518621061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127760189&rft_id=info:pmid/24753722&rfr_iscdi=true