Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale
We perform large-scale molecular dynamics simulations on diamond-like carbon to study wear mechanism and law at the nanoscale. Our simulations show that material loss during sliding varies linearly with normal load and sliding distance, consistent with Archard's law. Our simulations also show t...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2013-08, Vol.103 (7) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 103 |
creator | Sha, Zhen-Dong Sorkin, Viacheslav Branicio, Paulo S. Pei, Qing-Xiang Zhang, Yong-Wei Srolovitz, David J. |
description | We perform large-scale molecular dynamics simulations on diamond-like carbon to study wear mechanism and law at the nanoscale. Our simulations show that material loss during sliding varies linearly with normal load and sliding distance, consistent with Archard's law. Our simulations also show that the number of chemical bonds across the contact interface during sliding correlates well with friction force, but not with material loss, indicating that friction and wear follow different mechanisms. Our analysis reveals the following wear mechanism: the shear traction causes mass accumulation at the trailing end of contact, which is then lost by a cluster detachment process. |
doi_str_mv | 10.1063/1.4818713 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4818713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4818713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a43c536426ac1d894069bf70d0f9e9ca7bbc40ad81f2a480488455c60e9a51dc3</originalsourceid><addsrcrecordid>eNotkMFOxCAURYnRxDq68A_YumDkFWhhaSbqmDRxoxs3zStQRVswUGPm7x11Vjf33uQsDiGXwNfAG3ENa6lBtyCOSAW8bZkA0Mek4pwL1hgFp-SslPd9VbUQFXnpML96VixOns5p8vZrwkzdLuIcbKElzPthCSkWmkb67fdniNQFnFN0bAofnlrMQ4oUF7q8eRoxpj_cOTkZcSr-4pAr8nx3-7TZsu7x_mFz0zFbG7UwlMIq0ci6QQtOG8kbM4wtd3w03lhsh8FKjk7DWKPUXGotlbIN9wYVOCtW5Oqfa3MqJfux_8xhxrzrgfe_UnroD1LED5JQVI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Sha, Zhen-Dong ; Sorkin, Viacheslav ; Branicio, Paulo S. ; Pei, Qing-Xiang ; Zhang, Yong-Wei ; Srolovitz, David J.</creator><creatorcontrib>Sha, Zhen-Dong ; Sorkin, Viacheslav ; Branicio, Paulo S. ; Pei, Qing-Xiang ; Zhang, Yong-Wei ; Srolovitz, David J.</creatorcontrib><description>We perform large-scale molecular dynamics simulations on diamond-like carbon to study wear mechanism and law at the nanoscale. Our simulations show that material loss during sliding varies linearly with normal load and sliding distance, consistent with Archard's law. Our simulations also show that the number of chemical bonds across the contact interface during sliding correlates well with friction force, but not with material loss, indicating that friction and wear follow different mechanisms. Our analysis reveals the following wear mechanism: the shear traction causes mass accumulation at the trailing end of contact, which is then lost by a cluster detachment process.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4818713</identifier><language>eng</language><ispartof>Applied physics letters, 2013-08, Vol.103 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a43c536426ac1d894069bf70d0f9e9ca7bbc40ad81f2a480488455c60e9a51dc3</citedby><cites>FETCH-LOGICAL-c295t-a43c536426ac1d894069bf70d0f9e9ca7bbc40ad81f2a480488455c60e9a51dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sha, Zhen-Dong</creatorcontrib><creatorcontrib>Sorkin, Viacheslav</creatorcontrib><creatorcontrib>Branicio, Paulo S.</creatorcontrib><creatorcontrib>Pei, Qing-Xiang</creatorcontrib><creatorcontrib>Zhang, Yong-Wei</creatorcontrib><creatorcontrib>Srolovitz, David J.</creatorcontrib><title>Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale</title><title>Applied physics letters</title><description>We perform large-scale molecular dynamics simulations on diamond-like carbon to study wear mechanism and law at the nanoscale. Our simulations show that material loss during sliding varies linearly with normal load and sliding distance, consistent with Archard's law. Our simulations also show that the number of chemical bonds across the contact interface during sliding correlates well with friction force, but not with material loss, indicating that friction and wear follow different mechanisms. Our analysis reveals the following wear mechanism: the shear traction causes mass accumulation at the trailing end of contact, which is then lost by a cluster detachment process.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkMFOxCAURYnRxDq68A_YumDkFWhhaSbqmDRxoxs3zStQRVswUGPm7x11Vjf33uQsDiGXwNfAG3ENa6lBtyCOSAW8bZkA0Mek4pwL1hgFp-SslPd9VbUQFXnpML96VixOns5p8vZrwkzdLuIcbKElzPthCSkWmkb67fdniNQFnFN0bAofnlrMQ4oUF7q8eRoxpj_cOTkZcSr-4pAr8nx3-7TZsu7x_mFz0zFbG7UwlMIq0ci6QQtOG8kbM4wtd3w03lhsh8FKjk7DWKPUXGotlbIN9wYVOCtW5Oqfa3MqJfux_8xhxrzrgfe_UnroD1LED5JQVI4</recordid><startdate>20130812</startdate><enddate>20130812</enddate><creator>Sha, Zhen-Dong</creator><creator>Sorkin, Viacheslav</creator><creator>Branicio, Paulo S.</creator><creator>Pei, Qing-Xiang</creator><creator>Zhang, Yong-Wei</creator><creator>Srolovitz, David J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130812</creationdate><title>Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale</title><author>Sha, Zhen-Dong ; Sorkin, Viacheslav ; Branicio, Paulo S. ; Pei, Qing-Xiang ; Zhang, Yong-Wei ; Srolovitz, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a43c536426ac1d894069bf70d0f9e9ca7bbc40ad81f2a480488455c60e9a51dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, Zhen-Dong</creatorcontrib><creatorcontrib>Sorkin, Viacheslav</creatorcontrib><creatorcontrib>Branicio, Paulo S.</creatorcontrib><creatorcontrib>Pei, Qing-Xiang</creatorcontrib><creatorcontrib>Zhang, Yong-Wei</creatorcontrib><creatorcontrib>Srolovitz, David J.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, Zhen-Dong</au><au>Sorkin, Viacheslav</au><au>Branicio, Paulo S.</au><au>Pei, Qing-Xiang</au><au>Zhang, Yong-Wei</au><au>Srolovitz, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale</atitle><jtitle>Applied physics letters</jtitle><date>2013-08-12</date><risdate>2013</risdate><volume>103</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We perform large-scale molecular dynamics simulations on diamond-like carbon to study wear mechanism and law at the nanoscale. Our simulations show that material loss during sliding varies linearly with normal load and sliding distance, consistent with Archard's law. Our simulations also show that the number of chemical bonds across the contact interface during sliding correlates well with friction force, but not with material loss, indicating that friction and wear follow different mechanisms. Our analysis reveals the following wear mechanism: the shear traction causes mass accumulation at the trailing end of contact, which is then lost by a cluster detachment process.</abstract><doi>10.1063/1.4818713</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2013-08, Vol.103 (7) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4818713 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20molecular%20dynamics%20simulations%20of%20wear%20in%20diamond-like%20carbon%20at%20the%20nanoscale&rft.jtitle=Applied%20physics%20letters&rft.au=Sha,%20Zhen-Dong&rft.date=2013-08-12&rft.volume=103&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4818713&rft_dat=%3Ccrossref%3E10_1063_1_4818713%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |