Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale

We perform large-scale molecular dynamics simulations on diamond-like carbon to study wear mechanism and law at the nanoscale. Our simulations show that material loss during sliding varies linearly with normal load and sliding distance, consistent with Archard's law. Our simulations also show t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-08, Vol.103 (7)
Hauptverfasser: Sha, Zhen-Dong, Sorkin, Viacheslav, Branicio, Paulo S., Pei, Qing-Xiang, Zhang, Yong-Wei, Srolovitz, David J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics letters
container_volume 103
creator Sha, Zhen-Dong
Sorkin, Viacheslav
Branicio, Paulo S.
Pei, Qing-Xiang
Zhang, Yong-Wei
Srolovitz, David J.
description We perform large-scale molecular dynamics simulations on diamond-like carbon to study wear mechanism and law at the nanoscale. Our simulations show that material loss during sliding varies linearly with normal load and sliding distance, consistent with Archard's law. Our simulations also show that the number of chemical bonds across the contact interface during sliding correlates well with friction force, but not with material loss, indicating that friction and wear follow different mechanisms. Our analysis reveals the following wear mechanism: the shear traction causes mass accumulation at the trailing end of contact, which is then lost by a cluster detachment process.
doi_str_mv 10.1063/1.4818713
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4818713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4818713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a43c536426ac1d894069bf70d0f9e9ca7bbc40ad81f2a480488455c60e9a51dc3</originalsourceid><addsrcrecordid>eNotkMFOxCAURYnRxDq68A_YumDkFWhhaSbqmDRxoxs3zStQRVswUGPm7x11Vjf33uQsDiGXwNfAG3ENa6lBtyCOSAW8bZkA0Mek4pwL1hgFp-SslPd9VbUQFXnpML96VixOns5p8vZrwkzdLuIcbKElzPthCSkWmkb67fdniNQFnFN0bAofnlrMQ4oUF7q8eRoxpj_cOTkZcSr-4pAr8nx3-7TZsu7x_mFz0zFbG7UwlMIq0ci6QQtOG8kbM4wtd3w03lhsh8FKjk7DWKPUXGotlbIN9wYVOCtW5Oqfa3MqJfux_8xhxrzrgfe_UnroD1LED5JQVI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Sha, Zhen-Dong ; Sorkin, Viacheslav ; Branicio, Paulo S. ; Pei, Qing-Xiang ; Zhang, Yong-Wei ; Srolovitz, David J.</creator><creatorcontrib>Sha, Zhen-Dong ; Sorkin, Viacheslav ; Branicio, Paulo S. ; Pei, Qing-Xiang ; Zhang, Yong-Wei ; Srolovitz, David J.</creatorcontrib><description>We perform large-scale molecular dynamics simulations on diamond-like carbon to study wear mechanism and law at the nanoscale. Our simulations show that material loss during sliding varies linearly with normal load and sliding distance, consistent with Archard's law. Our simulations also show that the number of chemical bonds across the contact interface during sliding correlates well with friction force, but not with material loss, indicating that friction and wear follow different mechanisms. Our analysis reveals the following wear mechanism: the shear traction causes mass accumulation at the trailing end of contact, which is then lost by a cluster detachment process.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4818713</identifier><language>eng</language><ispartof>Applied physics letters, 2013-08, Vol.103 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a43c536426ac1d894069bf70d0f9e9ca7bbc40ad81f2a480488455c60e9a51dc3</citedby><cites>FETCH-LOGICAL-c295t-a43c536426ac1d894069bf70d0f9e9ca7bbc40ad81f2a480488455c60e9a51dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sha, Zhen-Dong</creatorcontrib><creatorcontrib>Sorkin, Viacheslav</creatorcontrib><creatorcontrib>Branicio, Paulo S.</creatorcontrib><creatorcontrib>Pei, Qing-Xiang</creatorcontrib><creatorcontrib>Zhang, Yong-Wei</creatorcontrib><creatorcontrib>Srolovitz, David J.</creatorcontrib><title>Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale</title><title>Applied physics letters</title><description>We perform large-scale molecular dynamics simulations on diamond-like carbon to study wear mechanism and law at the nanoscale. Our simulations show that material loss during sliding varies linearly with normal load and sliding distance, consistent with Archard's law. Our simulations also show that the number of chemical bonds across the contact interface during sliding correlates well with friction force, but not with material loss, indicating that friction and wear follow different mechanisms. Our analysis reveals the following wear mechanism: the shear traction causes mass accumulation at the trailing end of contact, which is then lost by a cluster detachment process.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkMFOxCAURYnRxDq68A_YumDkFWhhaSbqmDRxoxs3zStQRVswUGPm7x11Vjf33uQsDiGXwNfAG3ENa6lBtyCOSAW8bZkA0Mek4pwL1hgFp-SslPd9VbUQFXnpML96VixOns5p8vZrwkzdLuIcbKElzPthCSkWmkb67fdniNQFnFN0bAofnlrMQ4oUF7q8eRoxpj_cOTkZcSr-4pAr8nx3-7TZsu7x_mFz0zFbG7UwlMIq0ci6QQtOG8kbM4wtd3w03lhsh8FKjk7DWKPUXGotlbIN9wYVOCtW5Oqfa3MqJfux_8xhxrzrgfe_UnroD1LED5JQVI4</recordid><startdate>20130812</startdate><enddate>20130812</enddate><creator>Sha, Zhen-Dong</creator><creator>Sorkin, Viacheslav</creator><creator>Branicio, Paulo S.</creator><creator>Pei, Qing-Xiang</creator><creator>Zhang, Yong-Wei</creator><creator>Srolovitz, David J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130812</creationdate><title>Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale</title><author>Sha, Zhen-Dong ; Sorkin, Viacheslav ; Branicio, Paulo S. ; Pei, Qing-Xiang ; Zhang, Yong-Wei ; Srolovitz, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a43c536426ac1d894069bf70d0f9e9ca7bbc40ad81f2a480488455c60e9a51dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, Zhen-Dong</creatorcontrib><creatorcontrib>Sorkin, Viacheslav</creatorcontrib><creatorcontrib>Branicio, Paulo S.</creatorcontrib><creatorcontrib>Pei, Qing-Xiang</creatorcontrib><creatorcontrib>Zhang, Yong-Wei</creatorcontrib><creatorcontrib>Srolovitz, David J.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, Zhen-Dong</au><au>Sorkin, Viacheslav</au><au>Branicio, Paulo S.</au><au>Pei, Qing-Xiang</au><au>Zhang, Yong-Wei</au><au>Srolovitz, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale</atitle><jtitle>Applied physics letters</jtitle><date>2013-08-12</date><risdate>2013</risdate><volume>103</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We perform large-scale molecular dynamics simulations on diamond-like carbon to study wear mechanism and law at the nanoscale. Our simulations show that material loss during sliding varies linearly with normal load and sliding distance, consistent with Archard's law. Our simulations also show that the number of chemical bonds across the contact interface during sliding correlates well with friction force, but not with material loss, indicating that friction and wear follow different mechanisms. Our analysis reveals the following wear mechanism: the shear traction causes mass accumulation at the trailing end of contact, which is then lost by a cluster detachment process.</abstract><doi>10.1063/1.4818713</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-08, Vol.103 (7)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_4818713
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20molecular%20dynamics%20simulations%20of%20wear%20in%20diamond-like%20carbon%20at%20the%20nanoscale&rft.jtitle=Applied%20physics%20letters&rft.au=Sha,%20Zhen-Dong&rft.date=2013-08-12&rft.volume=103&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4818713&rft_dat=%3Ccrossref%3E10_1063_1_4818713%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true