Microfluidic device for trapping and monitoring three dimensional multicell spheroids using electrical impedance spectroscopy

In this paper, we report the design, fabrication, and testing of a lab-on-a-chip based microfluidic device for application of trapping and measuring the dielectric properties of microtumors over time using electrical impedance spectroscopy (EIS). Microelectromechanical system (MEMS) techniques were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomicrofluidics 2013-05, Vol.7 (3), p.34108-34108
Hauptverfasser: Luongo, Kevin, Holton, Angela, Kaushik, Ajeet, Spence, Paige, Ng, Beng, Deschenes, Robert, Sundaram, Shankar, Bhansali, Shekhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34108
container_issue 3
container_start_page 34108
container_title Biomicrofluidics
container_volume 7
creator Luongo, Kevin
Holton, Angela
Kaushik, Ajeet
Spence, Paige
Ng, Beng
Deschenes, Robert
Sundaram, Shankar
Bhansali, Shekhar
description In this paper, we report the design, fabrication, and testing of a lab-on-a-chip based microfluidic device for application of trapping and measuring the dielectric properties of microtumors over time using electrical impedance spectroscopy (EIS). Microelectromechanical system (MEMS) techniques were used to embed opposing electrodes onto the top and bottom surfaces of a microfluidic channel fabricated using Pyrex substrate, chrome gold, SU-8, and polydimethylsiloxane. Differing concentrations of cell culture medium, differing sized polystyrene beads, and MCF-7 microtumor spheroids were used to validate the designs ability to detect background conductivity changes and dielectric particle diameter changes between electrodes. The observed changes in cell medium concentrations demonstrated a linear relation to extracted solution resistance (Rs), while polystyrene beads and multicell spheroids induced changes in magnitude consistent with diameter increase. This design permits optical correlation between electrical measurements and EIS spectra.
doi_str_mv 10.1063/1.4809590
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4809590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490703916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-ab15ae105e671d68b2af5814b0f2009c8c9df65f26a339562865f181f76bac1e3</originalsourceid><addsrcrecordid>eNp9kUuPFCEUhYnROOPowj9gWKpJj1yqoGFjMpn4Ssa40TWheExjqgChqpNZ-N-l0m07xsQVXPg4l3MPQs-BXALh3Ru47AWRTJIH6BxkRzdAmHh4b3-GntT6nRAGW0ofozPa96QnVJyjn5-DKcmPS7DBYOv2wTjsU8Fz0TmHeIt1tHhKMcyprOW8K85hGyYXa0hRj3haxrm9Gkdc886VFGzFS11ZNzozl2AaFKbsrI5NvOb1MFWT8t1T9Mjrsbpnx_UCfXv_7uv1x83Nlw-frq9uNoYBzBs9ANOuGXF8C5aLgWrPBPQD8ZQQaYSR1nPmKdddJxmnohUgwG_5oA247gK9PejmZZicNS42e6PKJUy63Kmkg_r7Joaduk171XEhBWVN4OVRoKQfi6uzmkJdPevo0lIV9JJsSSeBN_TVAW1zrbU4f2oDRK1xKVDHuBr74v6_TuTvfBrw-gBUE2Y9t4GfmH0qf5RUtv5_8L-tfwHm87A2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490703916</pqid></control><display><type>article</type><title>Microfluidic device for trapping and monitoring three dimensional multicell spheroids using electrical impedance spectroscopy</title><source>AIP Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Luongo, Kevin ; Holton, Angela ; Kaushik, Ajeet ; Spence, Paige ; Ng, Beng ; Deschenes, Robert ; Sundaram, Shankar ; Bhansali, Shekhar</creator><creatorcontrib>Luongo, Kevin ; Holton, Angela ; Kaushik, Ajeet ; Spence, Paige ; Ng, Beng ; Deschenes, Robert ; Sundaram, Shankar ; Bhansali, Shekhar</creatorcontrib><description>In this paper, we report the design, fabrication, and testing of a lab-on-a-chip based microfluidic device for application of trapping and measuring the dielectric properties of microtumors over time using electrical impedance spectroscopy (EIS). Microelectromechanical system (MEMS) techniques were used to embed opposing electrodes onto the top and bottom surfaces of a microfluidic channel fabricated using Pyrex substrate, chrome gold, SU-8, and polydimethylsiloxane. Differing concentrations of cell culture medium, differing sized polystyrene beads, and MCF-7 microtumor spheroids were used to validate the designs ability to detect background conductivity changes and dielectric particle diameter changes between electrodes. The observed changes in cell medium concentrations demonstrated a linear relation to extracted solution resistance (Rs), while polystyrene beads and multicell spheroids induced changes in magnitude consistent with diameter increase. This design permits optical correlation between electrical measurements and EIS spectra.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.4809590</identifier><identifier>PMID: 24404028</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: AIP Publishing LLC</publisher><subject>Regular</subject><ispartof>Biomicrofluidics, 2013-05, Vol.7 (3), p.34108-34108</ispartof><rights>AIP Publishing LLC</rights><rights>Copyright © 2013 AIP Publishing LLC 2013 AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-ab15ae105e671d68b2af5814b0f2009c8c9df65f26a339562865f181f76bac1e3</citedby><cites>FETCH-LOGICAL-c511t-ab15ae105e671d68b2af5814b0f2009c8c9df65f26a339562865f181f76bac1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689825/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://pubs.aip.org/bmf/article-lookup/doi/10.1063/1.4809590$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,727,780,784,794,885,4512,27924,27925,53791,53793,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24404028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luongo, Kevin</creatorcontrib><creatorcontrib>Holton, Angela</creatorcontrib><creatorcontrib>Kaushik, Ajeet</creatorcontrib><creatorcontrib>Spence, Paige</creatorcontrib><creatorcontrib>Ng, Beng</creatorcontrib><creatorcontrib>Deschenes, Robert</creatorcontrib><creatorcontrib>Sundaram, Shankar</creatorcontrib><creatorcontrib>Bhansali, Shekhar</creatorcontrib><title>Microfluidic device for trapping and monitoring three dimensional multicell spheroids using electrical impedance spectroscopy</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>In this paper, we report the design, fabrication, and testing of a lab-on-a-chip based microfluidic device for application of trapping and measuring the dielectric properties of microtumors over time using electrical impedance spectroscopy (EIS). Microelectromechanical system (MEMS) techniques were used to embed opposing electrodes onto the top and bottom surfaces of a microfluidic channel fabricated using Pyrex substrate, chrome gold, SU-8, and polydimethylsiloxane. Differing concentrations of cell culture medium, differing sized polystyrene beads, and MCF-7 microtumor spheroids were used to validate the designs ability to detect background conductivity changes and dielectric particle diameter changes between electrodes. The observed changes in cell medium concentrations demonstrated a linear relation to extracted solution resistance (Rs), while polystyrene beads and multicell spheroids induced changes in magnitude consistent with diameter increase. This design permits optical correlation between electrical measurements and EIS spectra.</description><subject>Regular</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kUuPFCEUhYnROOPowj9gWKpJj1yqoGFjMpn4Ssa40TWheExjqgChqpNZ-N-l0m07xsQVXPg4l3MPQs-BXALh3Ru47AWRTJIH6BxkRzdAmHh4b3-GntT6nRAGW0ofozPa96QnVJyjn5-DKcmPS7DBYOv2wTjsU8Fz0TmHeIt1tHhKMcyprOW8K85hGyYXa0hRj3haxrm9Gkdc886VFGzFS11ZNzozl2AaFKbsrI5NvOb1MFWT8t1T9Mjrsbpnx_UCfXv_7uv1x83Nlw-frq9uNoYBzBs9ANOuGXF8C5aLgWrPBPQD8ZQQaYSR1nPmKdddJxmnohUgwG_5oA247gK9PejmZZicNS42e6PKJUy63Kmkg_r7Joaduk171XEhBWVN4OVRoKQfi6uzmkJdPevo0lIV9JJsSSeBN_TVAW1zrbU4f2oDRK1xKVDHuBr74v6_TuTvfBrw-gBUE2Y9t4GfmH0qf5RUtv5_8L-tfwHm87A2</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Luongo, Kevin</creator><creator>Holton, Angela</creator><creator>Kaushik, Ajeet</creator><creator>Spence, Paige</creator><creator>Ng, Beng</creator><creator>Deschenes, Robert</creator><creator>Sundaram, Shankar</creator><creator>Bhansali, Shekhar</creator><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130501</creationdate><title>Microfluidic device for trapping and monitoring three dimensional multicell spheroids using electrical impedance spectroscopy</title><author>Luongo, Kevin ; Holton, Angela ; Kaushik, Ajeet ; Spence, Paige ; Ng, Beng ; Deschenes, Robert ; Sundaram, Shankar ; Bhansali, Shekhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-ab15ae105e671d68b2af5814b0f2009c8c9df65f26a339562865f181f76bac1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Regular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luongo, Kevin</creatorcontrib><creatorcontrib>Holton, Angela</creatorcontrib><creatorcontrib>Kaushik, Ajeet</creatorcontrib><creatorcontrib>Spence, Paige</creatorcontrib><creatorcontrib>Ng, Beng</creatorcontrib><creatorcontrib>Deschenes, Robert</creatorcontrib><creatorcontrib>Sundaram, Shankar</creatorcontrib><creatorcontrib>Bhansali, Shekhar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luongo, Kevin</au><au>Holton, Angela</au><au>Kaushik, Ajeet</au><au>Spence, Paige</au><au>Ng, Beng</au><au>Deschenes, Robert</au><au>Sundaram, Shankar</au><au>Bhansali, Shekhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic device for trapping and monitoring three dimensional multicell spheroids using electrical impedance spectroscopy</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>7</volume><issue>3</issue><spage>34108</spage><epage>34108</epage><pages>34108-34108</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>In this paper, we report the design, fabrication, and testing of a lab-on-a-chip based microfluidic device for application of trapping and measuring the dielectric properties of microtumors over time using electrical impedance spectroscopy (EIS). Microelectromechanical system (MEMS) techniques were used to embed opposing electrodes onto the top and bottom surfaces of a microfluidic channel fabricated using Pyrex substrate, chrome gold, SU-8, and polydimethylsiloxane. Differing concentrations of cell culture medium, differing sized polystyrene beads, and MCF-7 microtumor spheroids were used to validate the designs ability to detect background conductivity changes and dielectric particle diameter changes between electrodes. The observed changes in cell medium concentrations demonstrated a linear relation to extracted solution resistance (Rs), while polystyrene beads and multicell spheroids induced changes in magnitude consistent with diameter increase. This design permits optical correlation between electrical measurements and EIS spectra.</abstract><cop>United States</cop><pub>AIP Publishing LLC</pub><pmid>24404028</pmid><doi>10.1063/1.4809590</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-1058
ispartof Biomicrofluidics, 2013-05, Vol.7 (3), p.34108-34108
issn 1932-1058
1932-1058
language eng
recordid cdi_crossref_primary_10_1063_1_4809590
source AIP Journals Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Regular
title Microfluidic device for trapping and monitoring three dimensional multicell spheroids using electrical impedance spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20device%20for%20trapping%20and%20monitoring%20three%20dimensional%20multicell%20spheroids%20using%20electrical%20impedance%20spectroscopy&rft.jtitle=Biomicrofluidics&rft.au=Luongo,%20Kevin&rft.date=2013-05-01&rft.volume=7&rft.issue=3&rft.spage=34108&rft.epage=34108&rft.pages=34108-34108&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/1.4809590&rft_dat=%3Cproquest_cross%3E1490703916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490703916&rft_id=info:pmid/24404028&rfr_iscdi=true