High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics

The view of considering global Pseudospectral methods (Sinc and Fourier) as the infinite order limit of local finite difference methods, and vice versa, finite difference as a certain sum acceleration of the pseudospectral methods is exploited to investigate high order finite difference algorithms f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1999-12, Vol.111 (24), p.10827-10835
Hauptverfasser: Guantes, Raul, Farantos, Stavros C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10835
container_issue 24
container_start_page 10827
container_title The Journal of chemical physics
container_volume 111
creator Guantes, Raul
Farantos, Stavros C.
description The view of considering global Pseudospectral methods (Sinc and Fourier) as the infinite order limit of local finite difference methods, and vice versa, finite difference as a certain sum acceleration of the pseudospectral methods is exploited to investigate high order finite difference algorithms for solving the Schrödinger equation in molecular dynamics. A Morse type potential for iodine molecule is used to compare the eigenenergies obtained by a Sinc Pseudospectral method and a high order finite difference approximation of the action of the kinetic energy operator on the wave function. Two-dimensional and three-dimensional model potentials are employed to compare spectra obtained by fast Fourier transform techniques and variable order finite difference. It is shown that it is not needed to employ very high order approximations of finite differences to reach the numerical accuracy of pseudospectral techniques. This, in addition to the fact that for complex configuration geometries and high dimensionality, local methods require less memory and are faster than pseudospectral methods, put finite difference among the effective algorithms for solving the Schrödinger equation in realistic molecular systems.
doi_str_mv 10.1063/1.480446
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_480446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_480446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-1f7b5007f9d31c8b16aafe8d1799124cd6647ea5bbf07d7571d285878ba467df3</originalsourceid><addsrcrecordid>eNotkL1OwzAURi0EEqUg8QgeWVLudRzbGVEFFKkSAzBHjn8SoyQGO0Xqi_ECvBhFZTr6hvMNh5BrhBWCKG9xxRVwLk7IAkHVhRQ1nJIFAMOiFiDOyUXO7wCAkvEFMZvQ9TQm6xL1YQqzozZ475KbjKN66GIKcz9m6mOiOQ5fYero3Dv6Yvr0820P82C6z52eQ5xomOgYB2d2g07U7ic9BpMvyZnXQ3ZX_1ySt4f71_Wm2D4_Pq3vtoVhrJoL9LKtAKSvbYlGtSi09k5ZlHWNjBsrBJdOV23rQVpZSbRMVUqqVnMhrS-X5Ob4a1LMOTnffKQw6rRvEJq_OA02xzjlL4MTWPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Guantes, Raul ; Farantos, Stavros C.</creator><creatorcontrib>Guantes, Raul ; Farantos, Stavros C.</creatorcontrib><description>The view of considering global Pseudospectral methods (Sinc and Fourier) as the infinite order limit of local finite difference methods, and vice versa, finite difference as a certain sum acceleration of the pseudospectral methods is exploited to investigate high order finite difference algorithms for solving the Schrödinger equation in molecular dynamics. A Morse type potential for iodine molecule is used to compare the eigenenergies obtained by a Sinc Pseudospectral method and a high order finite difference approximation of the action of the kinetic energy operator on the wave function. Two-dimensional and three-dimensional model potentials are employed to compare spectra obtained by fast Fourier transform techniques and variable order finite difference. It is shown that it is not needed to employ very high order approximations of finite differences to reach the numerical accuracy of pseudospectral techniques. This, in addition to the fact that for complex configuration geometries and high dimensionality, local methods require less memory and are faster than pseudospectral methods, put finite difference among the effective algorithms for solving the Schrödinger equation in realistic molecular systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.480446</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1999-12, Vol.111 (24), p.10827-10835</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-1f7b5007f9d31c8b16aafe8d1799124cd6647ea5bbf07d7571d285878ba467df3</citedby><cites>FETCH-LOGICAL-c225t-1f7b5007f9d31c8b16aafe8d1799124cd6647ea5bbf07d7571d285878ba467df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Guantes, Raul</creatorcontrib><creatorcontrib>Farantos, Stavros C.</creatorcontrib><title>High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics</title><title>The Journal of chemical physics</title><description>The view of considering global Pseudospectral methods (Sinc and Fourier) as the infinite order limit of local finite difference methods, and vice versa, finite difference as a certain sum acceleration of the pseudospectral methods is exploited to investigate high order finite difference algorithms for solving the Schrödinger equation in molecular dynamics. A Morse type potential for iodine molecule is used to compare the eigenenergies obtained by a Sinc Pseudospectral method and a high order finite difference approximation of the action of the kinetic energy operator on the wave function. Two-dimensional and three-dimensional model potentials are employed to compare spectra obtained by fast Fourier transform techniques and variable order finite difference. It is shown that it is not needed to employ very high order approximations of finite differences to reach the numerical accuracy of pseudospectral techniques. This, in addition to the fact that for complex configuration geometries and high dimensionality, local methods require less memory and are faster than pseudospectral methods, put finite difference among the effective algorithms for solving the Schrödinger equation in realistic molecular systems.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNotkL1OwzAURi0EEqUg8QgeWVLudRzbGVEFFKkSAzBHjn8SoyQGO0Xqi_ECvBhFZTr6hvMNh5BrhBWCKG9xxRVwLk7IAkHVhRQ1nJIFAMOiFiDOyUXO7wCAkvEFMZvQ9TQm6xL1YQqzozZ475KbjKN66GIKcz9m6mOiOQ5fYero3Dv6Yvr0820P82C6z52eQ5xomOgYB2d2g07U7ic9BpMvyZnXQ3ZX_1ySt4f71_Wm2D4_Pq3vtoVhrJoL9LKtAKSvbYlGtSi09k5ZlHWNjBsrBJdOV23rQVpZSbRMVUqqVnMhrS-X5Ob4a1LMOTnffKQw6rRvEJq_OA02xzjlL4MTWPE</recordid><startdate>19991222</startdate><enddate>19991222</enddate><creator>Guantes, Raul</creator><creator>Farantos, Stavros C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991222</creationdate><title>High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics</title><author>Guantes, Raul ; Farantos, Stavros C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-1f7b5007f9d31c8b16aafe8d1799124cd6647ea5bbf07d7571d285878ba467df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guantes, Raul</creatorcontrib><creatorcontrib>Farantos, Stavros C.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guantes, Raul</au><au>Farantos, Stavros C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><date>1999-12-22</date><risdate>1999</risdate><volume>111</volume><issue>24</issue><spage>10827</spage><epage>10835</epage><pages>10827-10835</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The view of considering global Pseudospectral methods (Sinc and Fourier) as the infinite order limit of local finite difference methods, and vice versa, finite difference as a certain sum acceleration of the pseudospectral methods is exploited to investigate high order finite difference algorithms for solving the Schrödinger equation in molecular dynamics. A Morse type potential for iodine molecule is used to compare the eigenenergies obtained by a Sinc Pseudospectral method and a high order finite difference approximation of the action of the kinetic energy operator on the wave function. Two-dimensional and three-dimensional model potentials are employed to compare spectra obtained by fast Fourier transform techniques and variable order finite difference. It is shown that it is not needed to employ very high order approximations of finite differences to reach the numerical accuracy of pseudospectral techniques. This, in addition to the fact that for complex configuration geometries and high dimensionality, local methods require less memory and are faster than pseudospectral methods, put finite difference among the effective algorithms for solving the Schrödinger equation in realistic molecular systems.</abstract><doi>10.1063/1.480446</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1999-12, Vol.111 (24), p.10827-10835
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_480446
source AIP Journals Complete; AIP Digital Archive
title High order finite difference algorithms for solving the Schrödinger equation in molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20order%20finite%20difference%20algorithms%20for%20solving%20the%20Schr%C3%B6dinger%20equation%20in%20molecular%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Guantes,%20Raul&rft.date=1999-12-22&rft.volume=111&rft.issue=24&rft.spage=10827&rft.epage=10835&rft.pages=10827-10835&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.480446&rft_dat=%3Ccrossref%3E10_1063_1_480446%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true