On contribution and detection of higher eigenmodes during dynamic atomic force microscopy

Dynamic mode operation of Atomic Force Microscopes relies on demodulation schemes to get information from different flexure modes of the cantilever while imaging a sample. In the article, we demonstrate that the conventional approach of discerning higher mode participation via amplitude and phase de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-04, Vol.102 (17)
Hauptverfasser: Saraswat, Govind, Salapaka, Murti V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Applied physics letters
container_volume 102
creator Saraswat, Govind
Salapaka, Murti V.
description Dynamic mode operation of Atomic Force Microscopes relies on demodulation schemes to get information from different flexure modes of the cantilever while imaging a sample. In the article, we demonstrate that the conventional approach of discerning higher mode participation via amplitude and phase demodulation is not suitable for high bandwidth applications. Furthermore, we provide a method where the higher mode participation is reconstructed with high fidelity, and present a scheme for high bandwidth detection of higher modes when their participation becomes significant. These methods are shown to outperform the traditional amplitude-phase demodulation schemes in terms of speed, resolution, and fidelity. The framework developed is tested on simulations and the method's utility for first two modes is demonstrated experimentally.
doi_str_mv 10.1063/1.4803939
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4803939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4803939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-dc82c100bc6d67e7371ddafa0df2a088c4789c5c41a31f0829f52714585946d63</originalsourceid><addsrcrecordid>eNotkD1PwzAYhC0EEqEw8A-8MqS8r53E9ogqvqRKXWBgilx_pEbErpx0yL8ngU53z3B30hFyj7BGaPgjrisJXHF1QQoEIUqOKC9JAQC8bFSN1-RmGL5nrBnnBfnaRWpSHHPYn8aQItXRUutGZ_4oeXoI3cFl6kLnYp-sG6g95RA7aqeo-2CoHtMiPmXj6OxyGkw6Trfkyuufwd2ddUU-X54_Nm_ldvf6vnnaloYxNZbWSGYQYG8a2wgnuEBrtddgPdMgpamEVKY2FWqOHiRTvmYCq1rWqpojfEUe_nuX4SE73x5z6HWeWoR2-aTF9vwJ_wWZG1R7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On contribution and detection of higher eigenmodes during dynamic atomic force microscopy</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Saraswat, Govind ; Salapaka, Murti V.</creator><creatorcontrib>Saraswat, Govind ; Salapaka, Murti V.</creatorcontrib><description>Dynamic mode operation of Atomic Force Microscopes relies on demodulation schemes to get information from different flexure modes of the cantilever while imaging a sample. In the article, we demonstrate that the conventional approach of discerning higher mode participation via amplitude and phase demodulation is not suitable for high bandwidth applications. Furthermore, we provide a method where the higher mode participation is reconstructed with high fidelity, and present a scheme for high bandwidth detection of higher modes when their participation becomes significant. These methods are shown to outperform the traditional amplitude-phase demodulation schemes in terms of speed, resolution, and fidelity. The framework developed is tested on simulations and the method's utility for first two modes is demonstrated experimentally.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4803939</identifier><language>eng</language><ispartof>Applied physics letters, 2013-04, Vol.102 (17)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-dc82c100bc6d67e7371ddafa0df2a088c4789c5c41a31f0829f52714585946d63</citedby><cites>FETCH-LOGICAL-c229t-dc82c100bc6d67e7371ddafa0df2a088c4789c5c41a31f0829f52714585946d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Saraswat, Govind</creatorcontrib><creatorcontrib>Salapaka, Murti V.</creatorcontrib><title>On contribution and detection of higher eigenmodes during dynamic atomic force microscopy</title><title>Applied physics letters</title><description>Dynamic mode operation of Atomic Force Microscopes relies on demodulation schemes to get information from different flexure modes of the cantilever while imaging a sample. In the article, we demonstrate that the conventional approach of discerning higher mode participation via amplitude and phase demodulation is not suitable for high bandwidth applications. Furthermore, we provide a method where the higher mode participation is reconstructed with high fidelity, and present a scheme for high bandwidth detection of higher modes when their participation becomes significant. These methods are shown to outperform the traditional amplitude-phase demodulation schemes in terms of speed, resolution, and fidelity. The framework developed is tested on simulations and the method's utility for first two modes is demonstrated experimentally.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAYhC0EEqEw8A-8MqS8r53E9ogqvqRKXWBgilx_pEbErpx0yL8ngU53z3B30hFyj7BGaPgjrisJXHF1QQoEIUqOKC9JAQC8bFSN1-RmGL5nrBnnBfnaRWpSHHPYn8aQItXRUutGZ_4oeXoI3cFl6kLnYp-sG6g95RA7aqeo-2CoHtMiPmXj6OxyGkw6Trfkyuufwd2ddUU-X54_Nm_ldvf6vnnaloYxNZbWSGYQYG8a2wgnuEBrtddgPdMgpamEVKY2FWqOHiRTvmYCq1rWqpojfEUe_nuX4SE73x5z6HWeWoR2-aTF9vwJ_wWZG1R7</recordid><startdate>20130429</startdate><enddate>20130429</enddate><creator>Saraswat, Govind</creator><creator>Salapaka, Murti V.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130429</creationdate><title>On contribution and detection of higher eigenmodes during dynamic atomic force microscopy</title><author>Saraswat, Govind ; Salapaka, Murti V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-dc82c100bc6d67e7371ddafa0df2a088c4789c5c41a31f0829f52714585946d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saraswat, Govind</creatorcontrib><creatorcontrib>Salapaka, Murti V.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saraswat, Govind</au><au>Salapaka, Murti V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On contribution and detection of higher eigenmodes during dynamic atomic force microscopy</atitle><jtitle>Applied physics letters</jtitle><date>2013-04-29</date><risdate>2013</risdate><volume>102</volume><issue>17</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Dynamic mode operation of Atomic Force Microscopes relies on demodulation schemes to get information from different flexure modes of the cantilever while imaging a sample. In the article, we demonstrate that the conventional approach of discerning higher mode participation via amplitude and phase demodulation is not suitable for high bandwidth applications. Furthermore, we provide a method where the higher mode participation is reconstructed with high fidelity, and present a scheme for high bandwidth detection of higher modes when their participation becomes significant. These methods are shown to outperform the traditional amplitude-phase demodulation schemes in terms of speed, resolution, and fidelity. The framework developed is tested on simulations and the method's utility for first two modes is demonstrated experimentally.</abstract><doi>10.1063/1.4803939</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-04, Vol.102 (17)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_4803939
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title On contribution and detection of higher eigenmodes during dynamic atomic force microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20contribution%20and%20detection%20of%20higher%20eigenmodes%20during%20dynamic%20atomic%20force%20microscopy&rft.jtitle=Applied%20physics%20letters&rft.au=Saraswat,%20Govind&rft.date=2013-04-29&rft.volume=102&rft.issue=17&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4803939&rft_dat=%3Ccrossref%3E10_1063_1_4803939%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true