Cumulant expansion of the reduced density matrices

k -particle cumulants λk (for 2⩽k⩽n) corresponding to the k-particle reduced density matrices γk for an n-fermion system are defined via a generating function. The two-particle cumulant λ2 describes two-particle correlations (excluding exchange), λ3 genuine three-particle correlations etc. The prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1999-02, Vol.110 (6), p.2800-2809
Hauptverfasser: Kutzelnigg, Werner, Mukherjee, Debashis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2809
container_issue 6
container_start_page 2800
container_title The Journal of chemical physics
container_volume 110
creator Kutzelnigg, Werner
Mukherjee, Debashis
description k -particle cumulants λk (for 2⩽k⩽n) corresponding to the k-particle reduced density matrices γk for an n-fermion system are defined via a generating function. The two-particle cumulant λ2 describes two-particle correlations (excluding exchange), λ3 genuine three-particle correlations etc. The properties of these cumulants are analyzed. Conditions for vanishing of certain λk are formulated. Necessary and sufficient for λ2=0 is the well-known idempotency condition γ2=γ for γ≡γ1. For λ3=0 to hold, a general necessary condition is Tr{2γ3−3γ2+γ}=0, for three special forms of the wave function (arbitrary two-electron state, antisymmetrized product of strongly orthogonal geminals on antisymmetrized geminal power wave function of extreme type) 2γ3−3γ2+γ=0 turns out to be necessary and sufficient. For a multiconfiguration self-consistent field wave function the only nonvanishing matrix elements of the cumulants are those where all labels refer to active (partially occupied) spin orbitals. Spin-free cumulants Λk corresponding to the spin-free reduced density matrices Γk are also defined and analyzed. The main interest in the density cumulants is in connection with the recently formulated normal ordering and the corresponding Wick theorem for arbitrary reference functions, but they are also useful for an analysis of electron correlation.
doi_str_mv 10.1063/1.478189
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_478189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_478189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-67b0310fb3b0e2c44eae2b77448cc239e45f14b9bd3c8d089126f766052341953</originalsourceid><addsrcrecordid>eNotj0FLwzAYhoMoWDfBn5Cjl87vS9KkOUpRJwy8uHNJ0i9YWduRtOD-vZN5euA9PLwPYw8IGwQtn3CjTI21vWIFQm1Loy1cswJAYGk16Ft2l_M3AKARqmCiWYbl4MaZ08_RjbmfRj5FPn8RT9QtgTre0XmeT3xwc-oD5TW7ie6Q6f6fK7Z_fflstuXu4-29ed6VQVicS208SITopQcSQSlyJLwxStUhCGlJVRGVt76Toe7OV1HoaLSGSkiFtpIr9njxhjTlnCi2x9QPLp1ahPavtcX20ip_AdrHROA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cumulant expansion of the reduced density matrices</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Kutzelnigg, Werner ; Mukherjee, Debashis</creator><creatorcontrib>Kutzelnigg, Werner ; Mukherjee, Debashis</creatorcontrib><description>k -particle cumulants λk (for 2⩽k⩽n) corresponding to the k-particle reduced density matrices γk for an n-fermion system are defined via a generating function. The two-particle cumulant λ2 describes two-particle correlations (excluding exchange), λ3 genuine three-particle correlations etc. The properties of these cumulants are analyzed. Conditions for vanishing of certain λk are formulated. Necessary and sufficient for λ2=0 is the well-known idempotency condition γ2=γ for γ≡γ1. For λ3=0 to hold, a general necessary condition is Tr{2γ3−3γ2+γ}=0, for three special forms of the wave function (arbitrary two-electron state, antisymmetrized product of strongly orthogonal geminals on antisymmetrized geminal power wave function of extreme type) 2γ3−3γ2+γ=0 turns out to be necessary and sufficient. For a multiconfiguration self-consistent field wave function the only nonvanishing matrix elements of the cumulants are those where all labels refer to active (partially occupied) spin orbitals. Spin-free cumulants Λk corresponding to the spin-free reduced density matrices Γk are also defined and analyzed. The main interest in the density cumulants is in connection with the recently formulated normal ordering and the corresponding Wick theorem for arbitrary reference functions, but they are also useful for an analysis of electron correlation.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.478189</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1999-02, Vol.110 (6), p.2800-2809</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-67b0310fb3b0e2c44eae2b77448cc239e45f14b9bd3c8d089126f766052341953</citedby><cites>FETCH-LOGICAL-c291t-67b0310fb3b0e2c44eae2b77448cc239e45f14b9bd3c8d089126f766052341953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kutzelnigg, Werner</creatorcontrib><creatorcontrib>Mukherjee, Debashis</creatorcontrib><title>Cumulant expansion of the reduced density matrices</title><title>The Journal of chemical physics</title><description>k -particle cumulants λk (for 2⩽k⩽n) corresponding to the k-particle reduced density matrices γk for an n-fermion system are defined via a generating function. The two-particle cumulant λ2 describes two-particle correlations (excluding exchange), λ3 genuine three-particle correlations etc. The properties of these cumulants are analyzed. Conditions for vanishing of certain λk are formulated. Necessary and sufficient for λ2=0 is the well-known idempotency condition γ2=γ for γ≡γ1. For λ3=0 to hold, a general necessary condition is Tr{2γ3−3γ2+γ}=0, for three special forms of the wave function (arbitrary two-electron state, antisymmetrized product of strongly orthogonal geminals on antisymmetrized geminal power wave function of extreme type) 2γ3−3γ2+γ=0 turns out to be necessary and sufficient. For a multiconfiguration self-consistent field wave function the only nonvanishing matrix elements of the cumulants are those where all labels refer to active (partially occupied) spin orbitals. Spin-free cumulants Λk corresponding to the spin-free reduced density matrices Γk are also defined and analyzed. The main interest in the density cumulants is in connection with the recently formulated normal ordering and the corresponding Wick theorem for arbitrary reference functions, but they are also useful for an analysis of electron correlation.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNotj0FLwzAYhoMoWDfBn5Cjl87vS9KkOUpRJwy8uHNJ0i9YWduRtOD-vZN5euA9PLwPYw8IGwQtn3CjTI21vWIFQm1Loy1cswJAYGk16Ft2l_M3AKARqmCiWYbl4MaZ08_RjbmfRj5FPn8RT9QtgTre0XmeT3xwc-oD5TW7ie6Q6f6fK7Z_fflstuXu4-29ed6VQVicS208SITopQcSQSlyJLwxStUhCGlJVRGVt76Toe7OV1HoaLSGSkiFtpIr9njxhjTlnCi2x9QPLp1ahPavtcX20ip_AdrHROA</recordid><startdate>19990208</startdate><enddate>19990208</enddate><creator>Kutzelnigg, Werner</creator><creator>Mukherjee, Debashis</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990208</creationdate><title>Cumulant expansion of the reduced density matrices</title><author>Kutzelnigg, Werner ; Mukherjee, Debashis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-67b0310fb3b0e2c44eae2b77448cc239e45f14b9bd3c8d089126f766052341953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutzelnigg, Werner</creatorcontrib><creatorcontrib>Mukherjee, Debashis</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutzelnigg, Werner</au><au>Mukherjee, Debashis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulant expansion of the reduced density matrices</atitle><jtitle>The Journal of chemical physics</jtitle><date>1999-02-08</date><risdate>1999</risdate><volume>110</volume><issue>6</issue><spage>2800</spage><epage>2809</epage><pages>2800-2809</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>k -particle cumulants λk (for 2⩽k⩽n) corresponding to the k-particle reduced density matrices γk for an n-fermion system are defined via a generating function. The two-particle cumulant λ2 describes two-particle correlations (excluding exchange), λ3 genuine three-particle correlations etc. The properties of these cumulants are analyzed. Conditions for vanishing of certain λk are formulated. Necessary and sufficient for λ2=0 is the well-known idempotency condition γ2=γ for γ≡γ1. For λ3=0 to hold, a general necessary condition is Tr{2γ3−3γ2+γ}=0, for three special forms of the wave function (arbitrary two-electron state, antisymmetrized product of strongly orthogonal geminals on antisymmetrized geminal power wave function of extreme type) 2γ3−3γ2+γ=0 turns out to be necessary and sufficient. For a multiconfiguration self-consistent field wave function the only nonvanishing matrix elements of the cumulants are those where all labels refer to active (partially occupied) spin orbitals. Spin-free cumulants Λk corresponding to the spin-free reduced density matrices Γk are also defined and analyzed. The main interest in the density cumulants is in connection with the recently formulated normal ordering and the corresponding Wick theorem for arbitrary reference functions, but they are also useful for an analysis of electron correlation.</abstract><doi>10.1063/1.478189</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1999-02, Vol.110 (6), p.2800-2809
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_478189
source AIP Journals Complete; AIP Digital Archive
title Cumulant expansion of the reduced density matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulant%20expansion%20of%20the%20reduced%20density%20matrices&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kutzelnigg,%20Werner&rft.date=1999-02-08&rft.volume=110&rft.issue=6&rft.spage=2800&rft.epage=2809&rft.pages=2800-2809&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.478189&rft_dat=%3Ccrossref%3E10_1063_1_478189%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true