Cumulant expansion of the reduced density matrices
k -particle cumulants λk (for 2⩽k⩽n) corresponding to the k-particle reduced density matrices γk for an n-fermion system are defined via a generating function. The two-particle cumulant λ2 describes two-particle correlations (excluding exchange), λ3 genuine three-particle correlations etc. The prope...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 1999-02, Vol.110 (6), p.2800-2809 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2809 |
---|---|
container_issue | 6 |
container_start_page | 2800 |
container_title | The Journal of chemical physics |
container_volume | 110 |
creator | Kutzelnigg, Werner Mukherjee, Debashis |
description | k -particle cumulants λk (for 2⩽k⩽n) corresponding to the k-particle reduced density matrices γk for an n-fermion system are defined via a generating function. The two-particle cumulant λ2 describes two-particle correlations (excluding exchange), λ3 genuine three-particle correlations etc. The properties of these cumulants are analyzed. Conditions for vanishing of certain λk are formulated. Necessary and sufficient for λ2=0 is the well-known idempotency condition γ2=γ for γ≡γ1. For λ3=0 to hold, a general necessary condition is Tr{2γ3−3γ2+γ}=0, for three special forms of the wave function (arbitrary two-electron state, antisymmetrized product of strongly orthogonal geminals on antisymmetrized geminal power wave function of extreme type) 2γ3−3γ2+γ=0 turns out to be necessary and sufficient. For a multiconfiguration self-consistent field wave function the only nonvanishing matrix elements of the cumulants are those where all labels refer to active (partially occupied) spin orbitals. Spin-free cumulants Λk corresponding to the spin-free reduced density matrices Γk are also defined and analyzed. The main interest in the density cumulants is in connection with the recently formulated normal ordering and the corresponding Wick theorem for arbitrary reference functions, but they are also useful for an analysis of electron correlation. |
doi_str_mv | 10.1063/1.478189 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_478189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_478189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-67b0310fb3b0e2c44eae2b77448cc239e45f14b9bd3c8d089126f766052341953</originalsourceid><addsrcrecordid>eNotj0FLwzAYhoMoWDfBn5Cjl87vS9KkOUpRJwy8uHNJ0i9YWduRtOD-vZN5euA9PLwPYw8IGwQtn3CjTI21vWIFQm1Loy1cswJAYGk16Ft2l_M3AKARqmCiWYbl4MaZ08_RjbmfRj5FPn8RT9QtgTre0XmeT3xwc-oD5TW7ie6Q6f6fK7Z_fflstuXu4-29ed6VQVicS208SITopQcSQSlyJLwxStUhCGlJVRGVt76Toe7OV1HoaLSGSkiFtpIr9njxhjTlnCi2x9QPLp1ahPavtcX20ip_AdrHROA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cumulant expansion of the reduced density matrices</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Kutzelnigg, Werner ; Mukherjee, Debashis</creator><creatorcontrib>Kutzelnigg, Werner ; Mukherjee, Debashis</creatorcontrib><description>k -particle cumulants λk (for 2⩽k⩽n) corresponding to the k-particle reduced density matrices γk for an n-fermion system are defined via a generating function. The two-particle cumulant λ2 describes two-particle correlations (excluding exchange), λ3 genuine three-particle correlations etc. The properties of these cumulants are analyzed. Conditions for vanishing of certain λk are formulated. Necessary and sufficient for λ2=0 is the well-known idempotency condition γ2=γ for γ≡γ1. For λ3=0 to hold, a general necessary condition is Tr{2γ3−3γ2+γ}=0, for three special forms of the wave function (arbitrary two-electron state, antisymmetrized product of strongly orthogonal geminals on antisymmetrized geminal power wave function of extreme type) 2γ3−3γ2+γ=0 turns out to be necessary and sufficient. For a multiconfiguration self-consistent field wave function the only nonvanishing matrix elements of the cumulants are those where all labels refer to active (partially occupied) spin orbitals. Spin-free cumulants Λk corresponding to the spin-free reduced density matrices Γk are also defined and analyzed. The main interest in the density cumulants is in connection with the recently formulated normal ordering and the corresponding Wick theorem for arbitrary reference functions, but they are also useful for an analysis of electron correlation.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.478189</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1999-02, Vol.110 (6), p.2800-2809</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-67b0310fb3b0e2c44eae2b77448cc239e45f14b9bd3c8d089126f766052341953</citedby><cites>FETCH-LOGICAL-c291t-67b0310fb3b0e2c44eae2b77448cc239e45f14b9bd3c8d089126f766052341953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kutzelnigg, Werner</creatorcontrib><creatorcontrib>Mukherjee, Debashis</creatorcontrib><title>Cumulant expansion of the reduced density matrices</title><title>The Journal of chemical physics</title><description>k -particle cumulants λk (for 2⩽k⩽n) corresponding to the k-particle reduced density matrices γk for an n-fermion system are defined via a generating function. The two-particle cumulant λ2 describes two-particle correlations (excluding exchange), λ3 genuine three-particle correlations etc. The properties of these cumulants are analyzed. Conditions for vanishing of certain λk are formulated. Necessary and sufficient for λ2=0 is the well-known idempotency condition γ2=γ for γ≡γ1. For λ3=0 to hold, a general necessary condition is Tr{2γ3−3γ2+γ}=0, for three special forms of the wave function (arbitrary two-electron state, antisymmetrized product of strongly orthogonal geminals on antisymmetrized geminal power wave function of extreme type) 2γ3−3γ2+γ=0 turns out to be necessary and sufficient. For a multiconfiguration self-consistent field wave function the only nonvanishing matrix elements of the cumulants are those where all labels refer to active (partially occupied) spin orbitals. Spin-free cumulants Λk corresponding to the spin-free reduced density matrices Γk are also defined and analyzed. The main interest in the density cumulants is in connection with the recently formulated normal ordering and the corresponding Wick theorem for arbitrary reference functions, but they are also useful for an analysis of electron correlation.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNotj0FLwzAYhoMoWDfBn5Cjl87vS9KkOUpRJwy8uHNJ0i9YWduRtOD-vZN5euA9PLwPYw8IGwQtn3CjTI21vWIFQm1Loy1cswJAYGk16Ft2l_M3AKARqmCiWYbl4MaZ08_RjbmfRj5FPn8RT9QtgTre0XmeT3xwc-oD5TW7ie6Q6f6fK7Z_fflstuXu4-29ed6VQVicS208SITopQcSQSlyJLwxStUhCGlJVRGVt76Toe7OV1HoaLSGSkiFtpIr9njxhjTlnCi2x9QPLp1ahPavtcX20ip_AdrHROA</recordid><startdate>19990208</startdate><enddate>19990208</enddate><creator>Kutzelnigg, Werner</creator><creator>Mukherjee, Debashis</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990208</creationdate><title>Cumulant expansion of the reduced density matrices</title><author>Kutzelnigg, Werner ; Mukherjee, Debashis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-67b0310fb3b0e2c44eae2b77448cc239e45f14b9bd3c8d089126f766052341953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutzelnigg, Werner</creatorcontrib><creatorcontrib>Mukherjee, Debashis</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutzelnigg, Werner</au><au>Mukherjee, Debashis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulant expansion of the reduced density matrices</atitle><jtitle>The Journal of chemical physics</jtitle><date>1999-02-08</date><risdate>1999</risdate><volume>110</volume><issue>6</issue><spage>2800</spage><epage>2809</epage><pages>2800-2809</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>k -particle cumulants λk (for 2⩽k⩽n) corresponding to the k-particle reduced density matrices γk for an n-fermion system are defined via a generating function. The two-particle cumulant λ2 describes two-particle correlations (excluding exchange), λ3 genuine three-particle correlations etc. The properties of these cumulants are analyzed. Conditions for vanishing of certain λk are formulated. Necessary and sufficient for λ2=0 is the well-known idempotency condition γ2=γ for γ≡γ1. For λ3=0 to hold, a general necessary condition is Tr{2γ3−3γ2+γ}=0, for three special forms of the wave function (arbitrary two-electron state, antisymmetrized product of strongly orthogonal geminals on antisymmetrized geminal power wave function of extreme type) 2γ3−3γ2+γ=0 turns out to be necessary and sufficient. For a multiconfiguration self-consistent field wave function the only nonvanishing matrix elements of the cumulants are those where all labels refer to active (partially occupied) spin orbitals. Spin-free cumulants Λk corresponding to the spin-free reduced density matrices Γk are also defined and analyzed. The main interest in the density cumulants is in connection with the recently formulated normal ordering and the corresponding Wick theorem for arbitrary reference functions, but they are also useful for an analysis of electron correlation.</abstract><doi>10.1063/1.478189</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 1999-02, Vol.110 (6), p.2800-2809 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_478189 |
source | AIP Journals Complete; AIP Digital Archive |
title | Cumulant expansion of the reduced density matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulant%20expansion%20of%20the%20reduced%20density%20matrices&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kutzelnigg,%20Werner&rft.date=1999-02-08&rft.volume=110&rft.issue=6&rft.spage=2800&rft.epage=2809&rft.pages=2800-2809&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.478189&rft_dat=%3Ccrossref%3E10_1063_1_478189%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |