Langmuir monolayers as disordered solids: Strain-tilt-backbone coupling and natural order parameters for the swiveling transitions
Multistability of Langmuir monolayers, in particular those composed of fatty acids, is reflected by a very rich and complicated phase diagram. We argue that strain-tilt-backbone coupling determines the behavior described by that diagram. Following the solid state approach, we show that a natural ord...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 1999-02, Vol.110 (5), p.2606-2611 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multistability of Langmuir monolayers, in particular those composed of fatty acids, is reflected by a very rich and complicated phase diagram. We argue that strain-tilt-backbone coupling determines the behavior described by that diagram. Following the solid state approach, we show that a natural order parameter set is defined by thermal averages of spherical harmonics and strain tensor components. In addition, we show that the backbone order parameter can be conveniently represented by an elastic dipole tensor. Treating Langmuir monolayers as disordered solids, we have derived an orientational entropy contribution to the free energy. The swiveling transition between L2(L2h) and L2′(L2*) phases is discussed in detail and is conveniently described in terms of the proposed order parameters. We discuss why the change in the distortion direction of the 2D unit cell tracks the change in tilt direction of the molecules, and also why the cell dimensions involved in the swiveling transition are the same in both phases. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.477981 |