High density adsorbed oxygen on Rh(111) and enhanced routes to metallic oxidation using atomic oxygen

Exposure of Rh(111) to atomic oxygen leads to the facile formation of a full-coverage and ordered (1×1)-O monolayer which is stable at room temperature. This result differs markedly from the half-coverage (2×1)-O overlayer which forms at saturation when using molecular oxygen. This demonstrates that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1999-02, Vol.110 (6), p.2757-2760
Hauptverfasser: Gibson, K. D., Viste, Mark, Sanchez, Errol C., Sibener, S. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2760
container_issue 6
container_start_page 2757
container_title The Journal of chemical physics
container_volume 110
creator Gibson, K. D.
Viste, Mark
Sanchez, Errol C.
Sibener, S. J.
description Exposure of Rh(111) to atomic oxygen leads to the facile formation of a full-coverage and ordered (1×1)-O monolayer which is stable at room temperature. This result differs markedly from the half-coverage (2×1)-O overlayer which forms at saturation when using molecular oxygen. This demonstrates that kinetic rather than thermodynamic constraints inhibit the formation of dense oxygen overlayers when O2 is the oxidant. We also report that O absorption into the bulk proceeds much more readily when using O rather than O2, a finding with direct implications for enhanced methods of low-temperature metallic oxidation. These results demonstrate that there are important fundamental differences in the way in which low-energy beams of atomic and molecular oxygen interact with metals.
doi_str_mv 10.1063/1.477877
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_477877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_477877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-aadb604e8a7246885896f70ec6ee09485c4a51482d48206c3686baa97b8fbea33</originalsourceid><addsrcrecordid>eNotUE1LAzEUDKJgrYI_Icd62PqyH0n2KEVboSCInpe3ydtuZJvIJgX7791aD8PADDMMw9i9gKUAWTyKZamUVuqCzQToOlOyhks2A8hFVkuQ1-wmxi8AECovZ4w2btdzSz66dORoYxhbsjz8HHfkefD8vV8IIR44esvJ9-jNZI_hkCjyFPieEg6DM1PCWUxuShyi8zuOKez_5FPRLbvqcIh0989z9vny_LHaZNu39evqaZuZPK9ShmhbCSVpnLZJrStdy04BGUkEdakrU2IlSp3bCSBNIbVsEWvV6q4lLIo5W5x7zRhiHKlrvke3x_HYCGhO9zSiOd9T_AKb8Fd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High density adsorbed oxygen on Rh(111) and enhanced routes to metallic oxidation using atomic oxygen</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Gibson, K. D. ; Viste, Mark ; Sanchez, Errol C. ; Sibener, S. J.</creator><creatorcontrib>Gibson, K. D. ; Viste, Mark ; Sanchez, Errol C. ; Sibener, S. J.</creatorcontrib><description>Exposure of Rh(111) to atomic oxygen leads to the facile formation of a full-coverage and ordered (1×1)-O monolayer which is stable at room temperature. This result differs markedly from the half-coverage (2×1)-O overlayer which forms at saturation when using molecular oxygen. This demonstrates that kinetic rather than thermodynamic constraints inhibit the formation of dense oxygen overlayers when O2 is the oxidant. We also report that O absorption into the bulk proceeds much more readily when using O rather than O2, a finding with direct implications for enhanced methods of low-temperature metallic oxidation. These results demonstrate that there are important fundamental differences in the way in which low-energy beams of atomic and molecular oxygen interact with metals.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.477877</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1999-02, Vol.110 (6), p.2757-2760</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-aadb604e8a7246885896f70ec6ee09485c4a51482d48206c3686baa97b8fbea33</citedby><cites>FETCH-LOGICAL-c225t-aadb604e8a7246885896f70ec6ee09485c4a51482d48206c3686baa97b8fbea33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Gibson, K. D.</creatorcontrib><creatorcontrib>Viste, Mark</creatorcontrib><creatorcontrib>Sanchez, Errol C.</creatorcontrib><creatorcontrib>Sibener, S. J.</creatorcontrib><title>High density adsorbed oxygen on Rh(111) and enhanced routes to metallic oxidation using atomic oxygen</title><title>The Journal of chemical physics</title><description>Exposure of Rh(111) to atomic oxygen leads to the facile formation of a full-coverage and ordered (1×1)-O monolayer which is stable at room temperature. This result differs markedly from the half-coverage (2×1)-O overlayer which forms at saturation when using molecular oxygen. This demonstrates that kinetic rather than thermodynamic constraints inhibit the formation of dense oxygen overlayers when O2 is the oxidant. We also report that O absorption into the bulk proceeds much more readily when using O rather than O2, a finding with direct implications for enhanced methods of low-temperature metallic oxidation. These results demonstrate that there are important fundamental differences in the way in which low-energy beams of atomic and molecular oxygen interact with metals.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNotUE1LAzEUDKJgrYI_Icd62PqyH0n2KEVboSCInpe3ydtuZJvIJgX7791aD8PADDMMw9i9gKUAWTyKZamUVuqCzQToOlOyhks2A8hFVkuQ1-wmxi8AECovZ4w2btdzSz66dORoYxhbsjz8HHfkefD8vV8IIR44esvJ9-jNZI_hkCjyFPieEg6DM1PCWUxuShyi8zuOKez_5FPRLbvqcIh0989z9vny_LHaZNu39evqaZuZPK9ShmhbCSVpnLZJrStdy04BGUkEdakrU2IlSp3bCSBNIbVsEWvV6q4lLIo5W5x7zRhiHKlrvke3x_HYCGhO9zSiOd9T_AKb8Fd4</recordid><startdate>19990208</startdate><enddate>19990208</enddate><creator>Gibson, K. D.</creator><creator>Viste, Mark</creator><creator>Sanchez, Errol C.</creator><creator>Sibener, S. J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990208</creationdate><title>High density adsorbed oxygen on Rh(111) and enhanced routes to metallic oxidation using atomic oxygen</title><author>Gibson, K. D. ; Viste, Mark ; Sanchez, Errol C. ; Sibener, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-aadb604e8a7246885896f70ec6ee09485c4a51482d48206c3686baa97b8fbea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibson, K. D.</creatorcontrib><creatorcontrib>Viste, Mark</creatorcontrib><creatorcontrib>Sanchez, Errol C.</creatorcontrib><creatorcontrib>Sibener, S. J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibson, K. D.</au><au>Viste, Mark</au><au>Sanchez, Errol C.</au><au>Sibener, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High density adsorbed oxygen on Rh(111) and enhanced routes to metallic oxidation using atomic oxygen</atitle><jtitle>The Journal of chemical physics</jtitle><date>1999-02-08</date><risdate>1999</risdate><volume>110</volume><issue>6</issue><spage>2757</spage><epage>2760</epage><pages>2757-2760</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Exposure of Rh(111) to atomic oxygen leads to the facile formation of a full-coverage and ordered (1×1)-O monolayer which is stable at room temperature. This result differs markedly from the half-coverage (2×1)-O overlayer which forms at saturation when using molecular oxygen. This demonstrates that kinetic rather than thermodynamic constraints inhibit the formation of dense oxygen overlayers when O2 is the oxidant. We also report that O absorption into the bulk proceeds much more readily when using O rather than O2, a finding with direct implications for enhanced methods of low-temperature metallic oxidation. These results demonstrate that there are important fundamental differences in the way in which low-energy beams of atomic and molecular oxygen interact with metals.</abstract><doi>10.1063/1.477877</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1999-02, Vol.110 (6), p.2757-2760
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_477877
source AIP Journals Complete; AIP Digital Archive
title High density adsorbed oxygen on Rh(111) and enhanced routes to metallic oxidation using atomic oxygen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T15%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20density%20adsorbed%20oxygen%20on%20Rh(111)%20and%20enhanced%20routes%20to%20metallic%20oxidation%20using%20atomic%20oxygen&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Gibson,%20K.%20D.&rft.date=1999-02-08&rft.volume=110&rft.issue=6&rft.spage=2757&rft.epage=2760&rft.pages=2757-2760&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.477877&rft_dat=%3Ccrossref%3E10_1063_1_477877%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true