A fast neuronal signal-sensitive continuous-wave near-infrared imaging system
We have developed a continuous-wave near-infrared imaging system to measure fast neuronal signals. We used a simultaneous sampling method with a separate high-speed analog-to-digital converter for each input channel, which provides a much larger point sample in a digital lock-in algorithm, higher te...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2012-09, Vol.83 (9), p.094301-094301 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 094301 |
---|---|
container_issue | 9 |
container_start_page | 094301 |
container_title | Review of scientific instruments |
container_volume | 83 |
creator | Zhang, Zhongxing Sun, Bailei Gong, Hui Zhang, Lei Sun, Jinyan Wang, Bangde Luo, Qingming |
description | We have developed a continuous-wave near-infrared imaging system to measure fast neuronal signals. We used a simultaneous sampling method with a separate high-speed analog-to-digital converter for each input channel, which provides a much larger point sample in a digital lock-in algorithm, higher temporal resolution, and lower crosstalk among detected channels. Without any analog filter, digital lock-in detection with a large point sample suppresses noise excellently, making the system less complex and offering better flexibility. In addition, using a custom-made collimator, more photons can reach the brain tissue due to the smaller divergence angle. Performance analysis shows high detection sensitivity (on the order of 0.1 pW) and high temporal resolution (∼50 Hz, 48 channels). Simulation experiments show that intensity changes on the order of 0.01% can be resolved by our instrument when averaging over approximately 500 stimuli. In vivo experiments over the motor cortex show that our instrument can detect fast neuronal signals in the human brain. |
doi_str_mv | 10.1063/1.4752021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4752021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1081876192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4763dfdc82739c051090a6f3b275cd2837ae28e1f6a6be12190484134585dd5b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlYXvoDMUoXUXCaTzLIUb1Bxo-shk0uJTDM1yVT69kZadSF4NocDH__5-QA4x2iKUUVv8LTkjCCCD8AYI1FDXhF6CMYI0RJWvBQjcBLjG8rDMD4GI0IRQbRmY_A0K6yMqfBmCL2XXRHdMi8YjY8uuY0pVO-T80M_RPgh8-2NDNB5G2QwunAruXR-WcRtTGZ1Co6s7KI52-8JeL27fZk_wMXz_eN8toCKMpZgySuqrVaCcFqr3AnVSFaWtoQzpYmgXBoiDLaVrFqDCa5RKUpMSyaY1qylE3C5y12H_n0wMTUrF5XpOulNLtpkCVjwCtcko1c7VIU-xmBssw65dNhmqPmy1-Bmby-zF_vYoV0Z_UN-68rA9Q6IyiWZXO9_mE0ffpOatbb_wX9ffwLF6YUV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081876192</pqid></control><display><type>article</type><title>A fast neuronal signal-sensitive continuous-wave near-infrared imaging system</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Zhang, Zhongxing ; Sun, Bailei ; Gong, Hui ; Zhang, Lei ; Sun, Jinyan ; Wang, Bangde ; Luo, Qingming</creator><creatorcontrib>Zhang, Zhongxing ; Sun, Bailei ; Gong, Hui ; Zhang, Lei ; Sun, Jinyan ; Wang, Bangde ; Luo, Qingming</creatorcontrib><description>We have developed a continuous-wave near-infrared imaging system to measure fast neuronal signals. We used a simultaneous sampling method with a separate high-speed analog-to-digital converter for each input channel, which provides a much larger point sample in a digital lock-in algorithm, higher temporal resolution, and lower crosstalk among detected channels. Without any analog filter, digital lock-in detection with a large point sample suppresses noise excellently, making the system less complex and offering better flexibility. In addition, using a custom-made collimator, more photons can reach the brain tissue due to the smaller divergence angle. Performance analysis shows high detection sensitivity (on the order of 0.1 pW) and high temporal resolution (∼50 Hz, 48 channels). Simulation experiments show that intensity changes on the order of 0.01% can be resolved by our instrument when averaging over approximately 500 stimuli. In vivo experiments over the motor cortex show that our instrument can detect fast neuronal signals in the human brain.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4752021</identifier><identifier>PMID: 23020395</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Arm - blood supply ; Arterial Occlusive Diseases - physiopathology ; Humans ; Infrared Rays ; Molecular Imaging - instrumentation ; Motor Cortex - cytology ; Neurons - cytology ; Time Factors ; User-Computer Interface</subject><ispartof>Review of scientific instruments, 2012-09, Vol.83 (9), p.094301-094301</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4763dfdc82739c051090a6f3b275cd2837ae28e1f6a6be12190484134585dd5b3</citedby><cites>FETCH-LOGICAL-c355t-4763dfdc82739c051090a6f3b275cd2837ae28e1f6a6be12190484134585dd5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4752021$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1558,4502,27915,27916,76145,76151</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23020395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhongxing</creatorcontrib><creatorcontrib>Sun, Bailei</creatorcontrib><creatorcontrib>Gong, Hui</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Sun, Jinyan</creatorcontrib><creatorcontrib>Wang, Bangde</creatorcontrib><creatorcontrib>Luo, Qingming</creatorcontrib><title>A fast neuronal signal-sensitive continuous-wave near-infrared imaging system</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We have developed a continuous-wave near-infrared imaging system to measure fast neuronal signals. We used a simultaneous sampling method with a separate high-speed analog-to-digital converter for each input channel, which provides a much larger point sample in a digital lock-in algorithm, higher temporal resolution, and lower crosstalk among detected channels. Without any analog filter, digital lock-in detection with a large point sample suppresses noise excellently, making the system less complex and offering better flexibility. In addition, using a custom-made collimator, more photons can reach the brain tissue due to the smaller divergence angle. Performance analysis shows high detection sensitivity (on the order of 0.1 pW) and high temporal resolution (∼50 Hz, 48 channels). Simulation experiments show that intensity changes on the order of 0.01% can be resolved by our instrument when averaging over approximately 500 stimuli. In vivo experiments over the motor cortex show that our instrument can detect fast neuronal signals in the human brain.</description><subject>Adult</subject><subject>Arm - blood supply</subject><subject>Arterial Occlusive Diseases - physiopathology</subject><subject>Humans</subject><subject>Infrared Rays</subject><subject>Molecular Imaging - instrumentation</subject><subject>Motor Cortex - cytology</subject><subject>Neurons - cytology</subject><subject>Time Factors</subject><subject>User-Computer Interface</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUhoMotlYXvoDMUoXUXCaTzLIUb1Bxo-shk0uJTDM1yVT69kZadSF4NocDH__5-QA4x2iKUUVv8LTkjCCCD8AYI1FDXhF6CMYI0RJWvBQjcBLjG8rDMD4GI0IRQbRmY_A0K6yMqfBmCL2XXRHdMi8YjY8uuY0pVO-T80M_RPgh8-2NDNB5G2QwunAruXR-WcRtTGZ1Co6s7KI52-8JeL27fZk_wMXz_eN8toCKMpZgySuqrVaCcFqr3AnVSFaWtoQzpYmgXBoiDLaVrFqDCa5RKUpMSyaY1qylE3C5y12H_n0wMTUrF5XpOulNLtpkCVjwCtcko1c7VIU-xmBssw65dNhmqPmy1-Bmby-zF_vYoV0Z_UN-68rA9Q6IyiWZXO9_mE0ffpOatbb_wX9ffwLF6YUV</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Zhang, Zhongxing</creator><creator>Sun, Bailei</creator><creator>Gong, Hui</creator><creator>Zhang, Lei</creator><creator>Sun, Jinyan</creator><creator>Wang, Bangde</creator><creator>Luo, Qingming</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201209</creationdate><title>A fast neuronal signal-sensitive continuous-wave near-infrared imaging system</title><author>Zhang, Zhongxing ; Sun, Bailei ; Gong, Hui ; Zhang, Lei ; Sun, Jinyan ; Wang, Bangde ; Luo, Qingming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4763dfdc82739c051090a6f3b275cd2837ae28e1f6a6be12190484134585dd5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Arm - blood supply</topic><topic>Arterial Occlusive Diseases - physiopathology</topic><topic>Humans</topic><topic>Infrared Rays</topic><topic>Molecular Imaging - instrumentation</topic><topic>Motor Cortex - cytology</topic><topic>Neurons - cytology</topic><topic>Time Factors</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhongxing</creatorcontrib><creatorcontrib>Sun, Bailei</creatorcontrib><creatorcontrib>Gong, Hui</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Sun, Jinyan</creatorcontrib><creatorcontrib>Wang, Bangde</creatorcontrib><creatorcontrib>Luo, Qingming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhongxing</au><au>Sun, Bailei</au><au>Gong, Hui</au><au>Zhang, Lei</au><au>Sun, Jinyan</au><au>Wang, Bangde</au><au>Luo, Qingming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast neuronal signal-sensitive continuous-wave near-infrared imaging system</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2012-09</date><risdate>2012</risdate><volume>83</volume><issue>9</issue><spage>094301</spage><epage>094301</epage><pages>094301-094301</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We have developed a continuous-wave near-infrared imaging system to measure fast neuronal signals. We used a simultaneous sampling method with a separate high-speed analog-to-digital converter for each input channel, which provides a much larger point sample in a digital lock-in algorithm, higher temporal resolution, and lower crosstalk among detected channels. Without any analog filter, digital lock-in detection with a large point sample suppresses noise excellently, making the system less complex and offering better flexibility. In addition, using a custom-made collimator, more photons can reach the brain tissue due to the smaller divergence angle. Performance analysis shows high detection sensitivity (on the order of 0.1 pW) and high temporal resolution (∼50 Hz, 48 channels). Simulation experiments show that intensity changes on the order of 0.01% can be resolved by our instrument when averaging over approximately 500 stimuli. In vivo experiments over the motor cortex show that our instrument can detect fast neuronal signals in the human brain.</abstract><cop>United States</cop><pmid>23020395</pmid><doi>10.1063/1.4752021</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2012-09, Vol.83 (9), p.094301-094301 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4752021 |
source | MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Adult Arm - blood supply Arterial Occlusive Diseases - physiopathology Humans Infrared Rays Molecular Imaging - instrumentation Motor Cortex - cytology Neurons - cytology Time Factors User-Computer Interface |
title | A fast neuronal signal-sensitive continuous-wave near-infrared imaging system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20neuronal%20signal-sensitive%20continuous-wave%20near-infrared%20imaging%20system&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Zhang,%20Zhongxing&rft.date=2012-09&rft.volume=83&rft.issue=9&rft.spage=094301&rft.epage=094301&rft.pages=094301-094301&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4752021&rft_dat=%3Cproquest_cross%3E1081876192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081876192&rft_id=info:pmid/23020395&rfr_iscdi=true |