A fast neuronal signal-sensitive continuous-wave near-infrared imaging system

We have developed a continuous-wave near-infrared imaging system to measure fast neuronal signals. We used a simultaneous sampling method with a separate high-speed analog-to-digital converter for each input channel, which provides a much larger point sample in a digital lock-in algorithm, higher te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2012-09, Vol.83 (9), p.094301-094301
Hauptverfasser: Zhang, Zhongxing, Sun, Bailei, Gong, Hui, Zhang, Lei, Sun, Jinyan, Wang, Bangde, Luo, Qingming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 094301
container_issue 9
container_start_page 094301
container_title Review of scientific instruments
container_volume 83
creator Zhang, Zhongxing
Sun, Bailei
Gong, Hui
Zhang, Lei
Sun, Jinyan
Wang, Bangde
Luo, Qingming
description We have developed a continuous-wave near-infrared imaging system to measure fast neuronal signals. We used a simultaneous sampling method with a separate high-speed analog-to-digital converter for each input channel, which provides a much larger point sample in a digital lock-in algorithm, higher temporal resolution, and lower crosstalk among detected channels. Without any analog filter, digital lock-in detection with a large point sample suppresses noise excellently, making the system less complex and offering better flexibility. In addition, using a custom-made collimator, more photons can reach the brain tissue due to the smaller divergence angle. Performance analysis shows high detection sensitivity (on the order of 0.1 pW) and high temporal resolution (∼50 Hz, 48 channels). Simulation experiments show that intensity changes on the order of 0.01% can be resolved by our instrument when averaging over approximately 500 stimuli. In vivo experiments over the motor cortex show that our instrument can detect fast neuronal signals in the human brain.
doi_str_mv 10.1063/1.4752021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4752021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1081876192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4763dfdc82739c051090a6f3b275cd2837ae28e1f6a6be12190484134585dd5b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlYXvoDMUoXUXCaTzLIUb1Bxo-shk0uJTDM1yVT69kZadSF4NocDH__5-QA4x2iKUUVv8LTkjCCCD8AYI1FDXhF6CMYI0RJWvBQjcBLjG8rDMD4GI0IRQbRmY_A0K6yMqfBmCL2XXRHdMi8YjY8uuY0pVO-T80M_RPgh8-2NDNB5G2QwunAruXR-WcRtTGZ1Co6s7KI52-8JeL27fZk_wMXz_eN8toCKMpZgySuqrVaCcFqr3AnVSFaWtoQzpYmgXBoiDLaVrFqDCa5RKUpMSyaY1qylE3C5y12H_n0wMTUrF5XpOulNLtpkCVjwCtcko1c7VIU-xmBssw65dNhmqPmy1-Bmby-zF_vYoV0Z_UN-68rA9Q6IyiWZXO9_mE0ffpOatbb_wX9ffwLF6YUV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081876192</pqid></control><display><type>article</type><title>A fast neuronal signal-sensitive continuous-wave near-infrared imaging system</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Zhang, Zhongxing ; Sun, Bailei ; Gong, Hui ; Zhang, Lei ; Sun, Jinyan ; Wang, Bangde ; Luo, Qingming</creator><creatorcontrib>Zhang, Zhongxing ; Sun, Bailei ; Gong, Hui ; Zhang, Lei ; Sun, Jinyan ; Wang, Bangde ; Luo, Qingming</creatorcontrib><description>We have developed a continuous-wave near-infrared imaging system to measure fast neuronal signals. We used a simultaneous sampling method with a separate high-speed analog-to-digital converter for each input channel, which provides a much larger point sample in a digital lock-in algorithm, higher temporal resolution, and lower crosstalk among detected channels. Without any analog filter, digital lock-in detection with a large point sample suppresses noise excellently, making the system less complex and offering better flexibility. In addition, using a custom-made collimator, more photons can reach the brain tissue due to the smaller divergence angle. Performance analysis shows high detection sensitivity (on the order of 0.1 pW) and high temporal resolution (∼50 Hz, 48 channels). Simulation experiments show that intensity changes on the order of 0.01% can be resolved by our instrument when averaging over approximately 500 stimuli. In vivo experiments over the motor cortex show that our instrument can detect fast neuronal signals in the human brain.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4752021</identifier><identifier>PMID: 23020395</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Arm - blood supply ; Arterial Occlusive Diseases - physiopathology ; Humans ; Infrared Rays ; Molecular Imaging - instrumentation ; Motor Cortex - cytology ; Neurons - cytology ; Time Factors ; User-Computer Interface</subject><ispartof>Review of scientific instruments, 2012-09, Vol.83 (9), p.094301-094301</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4763dfdc82739c051090a6f3b275cd2837ae28e1f6a6be12190484134585dd5b3</citedby><cites>FETCH-LOGICAL-c355t-4763dfdc82739c051090a6f3b275cd2837ae28e1f6a6be12190484134585dd5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4752021$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1558,4502,27915,27916,76145,76151</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23020395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhongxing</creatorcontrib><creatorcontrib>Sun, Bailei</creatorcontrib><creatorcontrib>Gong, Hui</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Sun, Jinyan</creatorcontrib><creatorcontrib>Wang, Bangde</creatorcontrib><creatorcontrib>Luo, Qingming</creatorcontrib><title>A fast neuronal signal-sensitive continuous-wave near-infrared imaging system</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We have developed a continuous-wave near-infrared imaging system to measure fast neuronal signals. We used a simultaneous sampling method with a separate high-speed analog-to-digital converter for each input channel, which provides a much larger point sample in a digital lock-in algorithm, higher temporal resolution, and lower crosstalk among detected channels. Without any analog filter, digital lock-in detection with a large point sample suppresses noise excellently, making the system less complex and offering better flexibility. In addition, using a custom-made collimator, more photons can reach the brain tissue due to the smaller divergence angle. Performance analysis shows high detection sensitivity (on the order of 0.1 pW) and high temporal resolution (∼50 Hz, 48 channels). Simulation experiments show that intensity changes on the order of 0.01% can be resolved by our instrument when averaging over approximately 500 stimuli. In vivo experiments over the motor cortex show that our instrument can detect fast neuronal signals in the human brain.</description><subject>Adult</subject><subject>Arm - blood supply</subject><subject>Arterial Occlusive Diseases - physiopathology</subject><subject>Humans</subject><subject>Infrared Rays</subject><subject>Molecular Imaging - instrumentation</subject><subject>Motor Cortex - cytology</subject><subject>Neurons - cytology</subject><subject>Time Factors</subject><subject>User-Computer Interface</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUhoMotlYXvoDMUoXUXCaTzLIUb1Bxo-shk0uJTDM1yVT69kZadSF4NocDH__5-QA4x2iKUUVv8LTkjCCCD8AYI1FDXhF6CMYI0RJWvBQjcBLjG8rDMD4GI0IRQbRmY_A0K6yMqfBmCL2XXRHdMi8YjY8uuY0pVO-T80M_RPgh8-2NDNB5G2QwunAruXR-WcRtTGZ1Co6s7KI52-8JeL27fZk_wMXz_eN8toCKMpZgySuqrVaCcFqr3AnVSFaWtoQzpYmgXBoiDLaVrFqDCa5RKUpMSyaY1qylE3C5y12H_n0wMTUrF5XpOulNLtpkCVjwCtcko1c7VIU-xmBssw65dNhmqPmy1-Bmby-zF_vYoV0Z_UN-68rA9Q6IyiWZXO9_mE0ffpOatbb_wX9ffwLF6YUV</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Zhang, Zhongxing</creator><creator>Sun, Bailei</creator><creator>Gong, Hui</creator><creator>Zhang, Lei</creator><creator>Sun, Jinyan</creator><creator>Wang, Bangde</creator><creator>Luo, Qingming</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201209</creationdate><title>A fast neuronal signal-sensitive continuous-wave near-infrared imaging system</title><author>Zhang, Zhongxing ; Sun, Bailei ; Gong, Hui ; Zhang, Lei ; Sun, Jinyan ; Wang, Bangde ; Luo, Qingming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4763dfdc82739c051090a6f3b275cd2837ae28e1f6a6be12190484134585dd5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Arm - blood supply</topic><topic>Arterial Occlusive Diseases - physiopathology</topic><topic>Humans</topic><topic>Infrared Rays</topic><topic>Molecular Imaging - instrumentation</topic><topic>Motor Cortex - cytology</topic><topic>Neurons - cytology</topic><topic>Time Factors</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhongxing</creatorcontrib><creatorcontrib>Sun, Bailei</creatorcontrib><creatorcontrib>Gong, Hui</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Sun, Jinyan</creatorcontrib><creatorcontrib>Wang, Bangde</creatorcontrib><creatorcontrib>Luo, Qingming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhongxing</au><au>Sun, Bailei</au><au>Gong, Hui</au><au>Zhang, Lei</au><au>Sun, Jinyan</au><au>Wang, Bangde</au><au>Luo, Qingming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast neuronal signal-sensitive continuous-wave near-infrared imaging system</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2012-09</date><risdate>2012</risdate><volume>83</volume><issue>9</issue><spage>094301</spage><epage>094301</epage><pages>094301-094301</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We have developed a continuous-wave near-infrared imaging system to measure fast neuronal signals. We used a simultaneous sampling method with a separate high-speed analog-to-digital converter for each input channel, which provides a much larger point sample in a digital lock-in algorithm, higher temporal resolution, and lower crosstalk among detected channels. Without any analog filter, digital lock-in detection with a large point sample suppresses noise excellently, making the system less complex and offering better flexibility. In addition, using a custom-made collimator, more photons can reach the brain tissue due to the smaller divergence angle. Performance analysis shows high detection sensitivity (on the order of 0.1 pW) and high temporal resolution (∼50 Hz, 48 channels). Simulation experiments show that intensity changes on the order of 0.01% can be resolved by our instrument when averaging over approximately 500 stimuli. In vivo experiments over the motor cortex show that our instrument can detect fast neuronal signals in the human brain.</abstract><cop>United States</cop><pmid>23020395</pmid><doi>10.1063/1.4752021</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2012-09, Vol.83 (9), p.094301-094301
issn 0034-6748
1089-7623
language eng
recordid cdi_crossref_primary_10_1063_1_4752021
source MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Adult
Arm - blood supply
Arterial Occlusive Diseases - physiopathology
Humans
Infrared Rays
Molecular Imaging - instrumentation
Motor Cortex - cytology
Neurons - cytology
Time Factors
User-Computer Interface
title A fast neuronal signal-sensitive continuous-wave near-infrared imaging system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20neuronal%20signal-sensitive%20continuous-wave%20near-infrared%20imaging%20system&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Zhang,%20Zhongxing&rft.date=2012-09&rft.volume=83&rft.issue=9&rft.spage=094301&rft.epage=094301&rft.pages=094301-094301&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4752021&rft_dat=%3Cproquest_cross%3E1081876192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081876192&rft_id=info:pmid/23020395&rfr_iscdi=true