Theoretical investigation of the autoionization process in molecular collision complexes: Computational methods and applications to He(23S)+H(12S)

The first complete ab initio treatment is applied to the autoionization process in the He*(2s3S)+H(1s) collisional complex. The autoionizing resonance state is defined through Feshbach projection based on orbital occupancy, and the corresponding potential is determined from multireference–configurat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1997-05, Vol.106 (17), p.7139-7161
Hauptverfasser: Movre, M., Meyer, W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7161
container_issue 17
container_start_page 7139
container_title The Journal of chemical physics
container_volume 106
creator Movre, M.
Meyer, W.
description The first complete ab initio treatment is applied to the autoionization process in the He*(2s3S)+H(1s) collisional complex. The autoionizing resonance state is defined through Feshbach projection based on orbital occupancy, and the corresponding potential is determined from multireference–configuration interaction (MR-CI) calculations with an accuracy of about 10 meV. The energy-dependent coupling with the continuum is derived from a compact (L2) molecular orbital (MO) without any phase information being lost. This “Penning MO” is projected onto the states of the continuum electron for energies that comply with the resonance condition thus providing the l-dependent coupling elements in local approximation. The continuum electron functions are calculated within the static-exchange approximation for up to 25 coupled angular momentum channels. The nuclear dynamics calculation is based on a complex Numerov algorithm and uses a converged set of seven complex coupling matrix elements. Weighting with experimental collision energy distributions finally gives the angle-dependent, as well as the angle-integrated, electron spectra for Penning and associative ionization processes. The results are discussed with respect to previous, either partial or model studies, and are compared with the recent most detailed experimental study of the angular-dependent Penning ionization electron spectra. The close agreement of theory and experiment demonstrates the adequacy of the local complex potential approach, as well as the importance of electron angular momentum transfer so far neglected in theoretical treatments.
doi_str_mv 10.1063/1.473735
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_473735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_473735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-95992d7b7fd07b73e85022c945e759d1cc0cbdc24469a7994e562ccf36a8208f3</originalsourceid><addsrcrecordid>eNotUMFKAzEQDaJgrYKfkGOLbJ0ku8nGmxS1QsFD63lJs7M2km2WTSrqZ_jFbq2XeTPvzbyBR8g1gxkDKW7ZLFdCieKEjBiUOlNSwykZAXCWaQnynFzE-A4ATPF8RH7WWww9JmeNp273gTG5N5Nc2NHQ0LRFavYpDKP7PrJdHyzGOOzSNni0e296aoP3Lh5kG9rO4yfGOzof2n36uxq8W0zbUEdqdjU1XeeHhwcl0hToAidcrKY3iwnjq-klOWuMj3j1j2Py-viwni-y5cvT8_x-mVkOMmW60JrXaqOaGoYqsCyAc6vzAlWha2Yt2E1teZ5LbZTWORaSW9sIaUoOZSPGZHL0tX2Iscem6nrXmv6rYlAdsqxYdcxS_AJOXmiH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical investigation of the autoionization process in molecular collision complexes: Computational methods and applications to He(23S)+H(12S)</title><source>AIP Digital Archive</source><creator>Movre, M. ; Meyer, W.</creator><creatorcontrib>Movre, M. ; Meyer, W.</creatorcontrib><description>The first complete ab initio treatment is applied to the autoionization process in the He*(2s3S)+H(1s) collisional complex. The autoionizing resonance state is defined through Feshbach projection based on orbital occupancy, and the corresponding potential is determined from multireference–configuration interaction (MR-CI) calculations with an accuracy of about 10 meV. The energy-dependent coupling with the continuum is derived from a compact (L2) molecular orbital (MO) without any phase information being lost. This “Penning MO” is projected onto the states of the continuum electron for energies that comply with the resonance condition thus providing the l-dependent coupling elements in local approximation. The continuum electron functions are calculated within the static-exchange approximation for up to 25 coupled angular momentum channels. The nuclear dynamics calculation is based on a complex Numerov algorithm and uses a converged set of seven complex coupling matrix elements. Weighting with experimental collision energy distributions finally gives the angle-dependent, as well as the angle-integrated, electron spectra for Penning and associative ionization processes. The results are discussed with respect to previous, either partial or model studies, and are compared with the recent most detailed experimental study of the angular-dependent Penning ionization electron spectra. The close agreement of theory and experiment demonstrates the adequacy of the local complex potential approach, as well as the importance of electron angular momentum transfer so far neglected in theoretical treatments.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.473735</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1997-05, Vol.106 (17), p.7139-7161</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-95992d7b7fd07b73e85022c945e759d1cc0cbdc24469a7994e562ccf36a8208f3</citedby><cites>FETCH-LOGICAL-c206t-95992d7b7fd07b73e85022c945e759d1cc0cbdc24469a7994e562ccf36a8208f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Movre, M.</creatorcontrib><creatorcontrib>Meyer, W.</creatorcontrib><title>Theoretical investigation of the autoionization process in molecular collision complexes: Computational methods and applications to He(23S)+H(12S)</title><title>The Journal of chemical physics</title><description>The first complete ab initio treatment is applied to the autoionization process in the He*(2s3S)+H(1s) collisional complex. The autoionizing resonance state is defined through Feshbach projection based on orbital occupancy, and the corresponding potential is determined from multireference–configuration interaction (MR-CI) calculations with an accuracy of about 10 meV. The energy-dependent coupling with the continuum is derived from a compact (L2) molecular orbital (MO) without any phase information being lost. This “Penning MO” is projected onto the states of the continuum electron for energies that comply with the resonance condition thus providing the l-dependent coupling elements in local approximation. The continuum electron functions are calculated within the static-exchange approximation for up to 25 coupled angular momentum channels. The nuclear dynamics calculation is based on a complex Numerov algorithm and uses a converged set of seven complex coupling matrix elements. Weighting with experimental collision energy distributions finally gives the angle-dependent, as well as the angle-integrated, electron spectra for Penning and associative ionization processes. The results are discussed with respect to previous, either partial or model studies, and are compared with the recent most detailed experimental study of the angular-dependent Penning ionization electron spectra. The close agreement of theory and experiment demonstrates the adequacy of the local complex potential approach, as well as the importance of electron angular momentum transfer so far neglected in theoretical treatments.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNotUMFKAzEQDaJgrYKfkGOLbJ0ku8nGmxS1QsFD63lJs7M2km2WTSrqZ_jFbq2XeTPvzbyBR8g1gxkDKW7ZLFdCieKEjBiUOlNSwykZAXCWaQnynFzE-A4ATPF8RH7WWww9JmeNp273gTG5N5Nc2NHQ0LRFavYpDKP7PrJdHyzGOOzSNni0e296aoP3Lh5kG9rO4yfGOzof2n36uxq8W0zbUEdqdjU1XeeHhwcl0hToAidcrKY3iwnjq-klOWuMj3j1j2Py-viwni-y5cvT8_x-mVkOMmW60JrXaqOaGoYqsCyAc6vzAlWha2Yt2E1teZ5LbZTWORaSW9sIaUoOZSPGZHL0tX2Iscem6nrXmv6rYlAdsqxYdcxS_AJOXmiH</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>Movre, M.</creator><creator>Meyer, W.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970501</creationdate><title>Theoretical investigation of the autoionization process in molecular collision complexes: Computational methods and applications to He(23S)+H(12S)</title><author>Movre, M. ; Meyer, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-95992d7b7fd07b73e85022c945e759d1cc0cbdc24469a7994e562ccf36a8208f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Movre, M.</creatorcontrib><creatorcontrib>Meyer, W.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Movre, M.</au><au>Meyer, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical investigation of the autoionization process in molecular collision complexes: Computational methods and applications to He(23S)+H(12S)</atitle><jtitle>The Journal of chemical physics</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>106</volume><issue>17</issue><spage>7139</spage><epage>7161</epage><pages>7139-7161</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The first complete ab initio treatment is applied to the autoionization process in the He*(2s3S)+H(1s) collisional complex. The autoionizing resonance state is defined through Feshbach projection based on orbital occupancy, and the corresponding potential is determined from multireference–configuration interaction (MR-CI) calculations with an accuracy of about 10 meV. The energy-dependent coupling with the continuum is derived from a compact (L2) molecular orbital (MO) without any phase information being lost. This “Penning MO” is projected onto the states of the continuum electron for energies that comply with the resonance condition thus providing the l-dependent coupling elements in local approximation. The continuum electron functions are calculated within the static-exchange approximation for up to 25 coupled angular momentum channels. The nuclear dynamics calculation is based on a complex Numerov algorithm and uses a converged set of seven complex coupling matrix elements. Weighting with experimental collision energy distributions finally gives the angle-dependent, as well as the angle-integrated, electron spectra for Penning and associative ionization processes. The results are discussed with respect to previous, either partial or model studies, and are compared with the recent most detailed experimental study of the angular-dependent Penning ionization electron spectra. The close agreement of theory and experiment demonstrates the adequacy of the local complex potential approach, as well as the importance of electron angular momentum transfer so far neglected in theoretical treatments.</abstract><doi>10.1063/1.473735</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1997-05, Vol.106 (17), p.7139-7161
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_473735
source AIP Digital Archive
title Theoretical investigation of the autoionization process in molecular collision complexes: Computational methods and applications to He(23S)+H(12S)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20investigation%20of%20the%20autoionization%20process%20in%20molecular%20collision%20complexes:%20Computational%20methods%20and%20applications%20to%20He(23S)+H(12S)&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Movre,%20M.&rft.date=1997-05-01&rft.volume=106&rft.issue=17&rft.spage=7139&rft.epage=7161&rft.pages=7139-7161&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.473735&rft_dat=%3Ccrossref%3E10_1063_1_473735%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true