Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions
Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instabili...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2012-05, Vol.24 (5), p.056101-056101-30 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 056101-30 |
---|---|
container_issue | 5 |
container_start_page | 056101 |
container_title | Physics of fluids (1994) |
container_volume | 24 |
creator | Massa, L. Jha, P. |
description | Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear. |
doi_str_mv | 10.1063/1.4719153 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4719153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_4719153Linear_analysis_of_t</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cf027e66784d959b0ef3dc80df3e58bd0aeaa8d292985d4f8656876a2637da833</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK4e_Ae9ePDQNWnaaXIRZPELVhTRc5jNB43bbZckCP33dunqzdO8A8-8MA8hl4wuGAV-wxZlzSSr-BGZMSpkXgPA8T7XNAfg7JScxfhFKeWygBl5W_nOYsiww3aIPma9y1Jjs3evm7QdbMhfbGw2_Xfmu5hw7VufhjFnsen1Jnctbu24JhtQJ9938ZycOGyjvTjMOfl8uP9YPuWr18fn5d0q15yVKdeOFrUFqEVpZCXX1DputKDGcVuJtaFoEYUpZCFFZUonoAJRAxbAa4OC8zm5nnp16GMM1qld8FsMg2JU7VUopg4qRvZqYncYNbYuYKd9_DsogNKCgxy524mL2ifcv_N_6eRN_XpTvVOJ_wCZhHPy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions</title><source>Scitation (American Institute of Physics)</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Massa, L. ; Jha, P.</creator><creatorcontrib>Massa, L. ; Jha, P.</creatorcontrib><description>Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4719153</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Applied sciences ; Combustion of gaseous fuels ; Combustion. Flame ; Compressible flows; shock and detonation phenomena ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Interfacial instability ; Physics ; Shock-wave interactions and shock effects ; Theoretical studies. Data and constants. Metering</subject><ispartof>Physics of fluids (1994), 2012-05, Vol.24 (5), p.056101-056101-30</ispartof><rights>2012 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-cf027e66784d959b0ef3dc80df3e58bd0aeaa8d292985d4f8656876a2637da833</citedby><cites>FETCH-LOGICAL-c314t-cf027e66784d959b0ef3dc80df3e58bd0aeaa8d292985d4f8656876a2637da833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4497,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26002369$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Massa, L.</creatorcontrib><creatorcontrib>Jha, P.</creatorcontrib><title>Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions</title><title>Physics of fluids (1994)</title><description>Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.</description><subject>Applied sciences</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Interfacial instability</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK4e_Ae9ePDQNWnaaXIRZPELVhTRc5jNB43bbZckCP33dunqzdO8A8-8MA8hl4wuGAV-wxZlzSSr-BGZMSpkXgPA8T7XNAfg7JScxfhFKeWygBl5W_nOYsiww3aIPma9y1Jjs3evm7QdbMhfbGw2_Xfmu5hw7VufhjFnsen1Jnctbu24JhtQJ9938ZycOGyjvTjMOfl8uP9YPuWr18fn5d0q15yVKdeOFrUFqEVpZCXX1DputKDGcVuJtaFoEYUpZCFFZUonoAJRAxbAa4OC8zm5nnp16GMM1qld8FsMg2JU7VUopg4qRvZqYncYNbYuYKd9_DsogNKCgxy524mL2ifcv_N_6eRN_XpTvVOJ_wCZhHPy</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Massa, L.</creator><creator>Jha, P.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120501</creationdate><title>Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions</title><author>Massa, L. ; Jha, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cf027e66784d959b0ef3dc80df3e58bd0aeaa8d292985d4f8656876a2637da833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Interfacial instability</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massa, L.</creatorcontrib><creatorcontrib>Jha, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massa, L.</au><au>Jha, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>24</volume><issue>5</issue><spage>056101</spage><epage>056101-30</epage><pages>056101-056101-30</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4719153</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2012-05, Vol.24 (5), p.056101-056101-30 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_4719153 |
source | Scitation (American Institute of Physics); AIP Digital Archive; Alma/SFX Local Collection |
subjects | Applied sciences Combustion of gaseous fuels Combustion. Flame Compressible flows shock and detonation phenomena Energy Energy. Thermal use of fuels Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamic stability Interfacial instability Physics Shock-wave interactions and shock effects Theoretical studies. Data and constants. Metering |
title | Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20analysis%20of%20the%20Richtmyer-Meshkov%20instability%20in%20shock-flame%20interactions&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Massa,%20L.&rft.date=2012-05-01&rft.volume=24&rft.issue=5&rft.spage=056101&rft.epage=056101-30&rft.pages=056101-056101-30&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.4719153&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_4719153Linear_analysis_of_t%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |