Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions

Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2012-05, Vol.24 (5), p.056101-056101-30
Hauptverfasser: Massa, L., Jha, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 056101-30
container_issue 5
container_start_page 056101
container_title Physics of fluids (1994)
container_volume 24
creator Massa, L.
Jha, P.
description Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.
doi_str_mv 10.1063/1.4719153
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_4719153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_4719153Linear_analysis_of_t</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cf027e66784d959b0ef3dc80df3e58bd0aeaa8d292985d4f8656876a2637da833</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK4e_Ae9ePDQNWnaaXIRZPELVhTRc5jNB43bbZckCP33dunqzdO8A8-8MA8hl4wuGAV-wxZlzSSr-BGZMSpkXgPA8T7XNAfg7JScxfhFKeWygBl5W_nOYsiww3aIPma9y1Jjs3evm7QdbMhfbGw2_Xfmu5hw7VufhjFnsen1Jnctbu24JhtQJ9938ZycOGyjvTjMOfl8uP9YPuWr18fn5d0q15yVKdeOFrUFqEVpZCXX1DputKDGcVuJtaFoEYUpZCFFZUonoAJRAxbAa4OC8zm5nnp16GMM1qld8FsMg2JU7VUopg4qRvZqYncYNbYuYKd9_DsogNKCgxy524mL2ifcv_N_6eRN_XpTvVOJ_wCZhHPy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions</title><source>Scitation (American Institute of Physics)</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Massa, L. ; Jha, P.</creator><creatorcontrib>Massa, L. ; Jha, P.</creatorcontrib><description>Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4719153</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Applied sciences ; Combustion of gaseous fuels ; Combustion. Flame ; Compressible flows; shock and detonation phenomena ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Interfacial instability ; Physics ; Shock-wave interactions and shock effects ; Theoretical studies. Data and constants. Metering</subject><ispartof>Physics of fluids (1994), 2012-05, Vol.24 (5), p.056101-056101-30</ispartof><rights>2012 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-cf027e66784d959b0ef3dc80df3e58bd0aeaa8d292985d4f8656876a2637da833</citedby><cites>FETCH-LOGICAL-c314t-cf027e66784d959b0ef3dc80df3e58bd0aeaa8d292985d4f8656876a2637da833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4497,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26002369$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Massa, L.</creatorcontrib><creatorcontrib>Jha, P.</creatorcontrib><title>Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions</title><title>Physics of fluids (1994)</title><description>Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.</description><subject>Applied sciences</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Interfacial instability</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK4e_Ae9ePDQNWnaaXIRZPELVhTRc5jNB43bbZckCP33dunqzdO8A8-8MA8hl4wuGAV-wxZlzSSr-BGZMSpkXgPA8T7XNAfg7JScxfhFKeWygBl5W_nOYsiww3aIPma9y1Jjs3evm7QdbMhfbGw2_Xfmu5hw7VufhjFnsen1Jnctbu24JhtQJ9938ZycOGyjvTjMOfl8uP9YPuWr18fn5d0q15yVKdeOFrUFqEVpZCXX1DputKDGcVuJtaFoEYUpZCFFZUonoAJRAxbAa4OC8zm5nnp16GMM1qld8FsMg2JU7VUopg4qRvZqYncYNbYuYKd9_DsogNKCgxy524mL2ifcv_N_6eRN_XpTvVOJ_wCZhHPy</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Massa, L.</creator><creator>Jha, P.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120501</creationdate><title>Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions</title><author>Massa, L. ; Jha, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cf027e66784d959b0ef3dc80df3e58bd0aeaa8d292985d4f8656876a2637da833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Interfacial instability</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massa, L.</creatorcontrib><creatorcontrib>Jha, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massa, L.</au><au>Jha, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>24</volume><issue>5</issue><spage>056101</spage><epage>056101-30</epage><pages>056101-056101-30</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4719153</doi></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2012-05, Vol.24 (5), p.056101-056101-30
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_4719153
source Scitation (American Institute of Physics); AIP Digital Archive; Alma/SFX Local Collection
subjects Applied sciences
Combustion of gaseous fuels
Combustion. Flame
Compressible flows
shock and detonation phenomena
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Interfacial instability
Physics
Shock-wave interactions and shock effects
Theoretical studies. Data and constants. Metering
title Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20analysis%20of%20the%20Richtmyer-Meshkov%20instability%20in%20shock-flame%20interactions&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Massa,%20L.&rft.date=2012-05-01&rft.volume=24&rft.issue=5&rft.spage=056101&rft.epage=056101-30&rft.pages=056101-056101-30&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.4719153&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_4719153Linear_analysis_of_t%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true