Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension

This Monte Carlo simulation was undertaken to provide some qualitative insight into the dependence of the glass transition of polymer melts on the spatial dimension. To this end, two- and three-dimensional systems were simulated, in which we kept the external conditions, such as the density or the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1994-07, Vol.101 (2), p.1616-1624
Hauptverfasser: Lobe, B., Baschnagel, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1624
container_issue 2
container_start_page 1616
container_title The Journal of chemical physics
container_volume 101
creator Lobe, B.
Baschnagel, J.
description This Monte Carlo simulation was undertaken to provide some qualitative insight into the dependence of the glass transition of polymer melts on the spatial dimension. To this end, two- and three-dimensional systems were simulated, in which we kept the external conditions, such as the density or the cooling schedule, the same for both dimensions. The melts, simulated by a lattice model (bond-fluctuation model), undergo a kinetic freezing, while being continuously cooled from the equilibrium liquid to the nonequilibrium glassy phase. The resulting glass transition as well as the other simulation results indicate that the spatial constraints are stronger in three than in two dimensions. This finding is reminiscent of the influence of the spatial dimension on the ability of a liquid to crystallize.
doi_str_mv 10.1063/1.467782
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_467782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_467782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-2322ed9179494c52d0b84b96978493861722f2e653d9258fe3633b60992e11773</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxIMoWKvgR8jRS-rLnyYbb1K0Fipe9Lyku291JZuUJEV68bO7WvX0YN7MD2YIueQw46DlNZ8pbUwljsiEQ2WZ0RaOyQRAcGY16FNylvM7AHAj1IR8PsZQkC5c8pHmfth5V_oYaOxoeUP66l3OtCQXcv-j94GWj8ioC-1oSIis7QccvzE4T7fR7wdMdEBf8g1dhc7vMDT4h8vbkT76_jPn5KRzPuPF752Sl_u758UDWz8tV4vbNWu4gsKEFAJby41VVjVz0cKmUhurramUlZUeu4hOoJ7L1op51aHUUm40WCuQc2PklFwduE2KOSfs6m3qB5f2NYf6e7ea14fd5BdlJF_d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension</title><source>AIP Digital Archive</source><creator>Lobe, B. ; Baschnagel, J.</creator><creatorcontrib>Lobe, B. ; Baschnagel, J.</creatorcontrib><description>This Monte Carlo simulation was undertaken to provide some qualitative insight into the dependence of the glass transition of polymer melts on the spatial dimension. To this end, two- and three-dimensional systems were simulated, in which we kept the external conditions, such as the density or the cooling schedule, the same for both dimensions. The melts, simulated by a lattice model (bond-fluctuation model), undergo a kinetic freezing, while being continuously cooled from the equilibrium liquid to the nonequilibrium glassy phase. The resulting glass transition as well as the other simulation results indicate that the spatial constraints are stronger in three than in two dimensions. This finding is reminiscent of the influence of the spatial dimension on the ability of a liquid to crystallize.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.467782</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1994-07, Vol.101 (2), p.1616-1624</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-2322ed9179494c52d0b84b96978493861722f2e653d9258fe3633b60992e11773</citedby><cites>FETCH-LOGICAL-c140t-2322ed9179494c52d0b84b96978493861722f2e653d9258fe3633b60992e11773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Lobe, B.</creatorcontrib><creatorcontrib>Baschnagel, J.</creatorcontrib><title>Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension</title><title>The Journal of chemical physics</title><description>This Monte Carlo simulation was undertaken to provide some qualitative insight into the dependence of the glass transition of polymer melts on the spatial dimension. To this end, two- and three-dimensional systems were simulated, in which we kept the external conditions, such as the density or the cooling schedule, the same for both dimensions. The melts, simulated by a lattice model (bond-fluctuation model), undergo a kinetic freezing, while being continuously cooled from the equilibrium liquid to the nonequilibrium glassy phase. The resulting glass transition as well as the other simulation results indicate that the spatial constraints are stronger in three than in two dimensions. This finding is reminiscent of the influence of the spatial dimension on the ability of a liquid to crystallize.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEUxIMoWKvgR8jRS-rLnyYbb1K0Fipe9Lyku291JZuUJEV68bO7WvX0YN7MD2YIueQw46DlNZ8pbUwljsiEQ2WZ0RaOyQRAcGY16FNylvM7AHAj1IR8PsZQkC5c8pHmfth5V_oYaOxoeUP66l3OtCQXcv-j94GWj8ioC-1oSIis7QccvzE4T7fR7wdMdEBf8g1dhc7vMDT4h8vbkT76_jPn5KRzPuPF752Sl_u758UDWz8tV4vbNWu4gsKEFAJby41VVjVz0cKmUhurramUlZUeu4hOoJ7L1op51aHUUm40WCuQc2PklFwduE2KOSfs6m3qB5f2NYf6e7ea14fd5BdlJF_d</recordid><startdate>19940715</startdate><enddate>19940715</enddate><creator>Lobe, B.</creator><creator>Baschnagel, J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940715</creationdate><title>Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension</title><author>Lobe, B. ; Baschnagel, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-2322ed9179494c52d0b84b96978493861722f2e653d9258fe3633b60992e11773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobe, B.</creatorcontrib><creatorcontrib>Baschnagel, J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobe, B.</au><au>Baschnagel, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension</atitle><jtitle>The Journal of chemical physics</jtitle><date>1994-07-15</date><risdate>1994</risdate><volume>101</volume><issue>2</issue><spage>1616</spage><epage>1624</epage><pages>1616-1624</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>This Monte Carlo simulation was undertaken to provide some qualitative insight into the dependence of the glass transition of polymer melts on the spatial dimension. To this end, two- and three-dimensional systems were simulated, in which we kept the external conditions, such as the density or the cooling schedule, the same for both dimensions. The melts, simulated by a lattice model (bond-fluctuation model), undergo a kinetic freezing, while being continuously cooled from the equilibrium liquid to the nonequilibrium glassy phase. The resulting glass transition as well as the other simulation results indicate that the spatial constraints are stronger in three than in two dimensions. This finding is reminiscent of the influence of the spatial dimension on the ability of a liquid to crystallize.</abstract><doi>10.1063/1.467782</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1994-07, Vol.101 (2), p.1616-1624
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_467782
source AIP Digital Archive
title Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20of%20the%20glass%20transition%20in%20two-%20and%20three-dimensional%20polymer%20melts:%20Influence%20of%20the%20spatial%20dimension&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lobe,%20B.&rft.date=1994-07-15&rft.volume=101&rft.issue=2&rft.spage=1616&rft.epage=1624&rft.pages=1616-1624&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.467782&rft_dat=%3Ccrossref%3E10_1063_1_467782%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true