Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension
This Monte Carlo simulation was undertaken to provide some qualitative insight into the dependence of the glass transition of polymer melts on the spatial dimension. To this end, two- and three-dimensional systems were simulated, in which we kept the external conditions, such as the density or the c...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 1994-07, Vol.101 (2), p.1616-1624 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1624 |
---|---|
container_issue | 2 |
container_start_page | 1616 |
container_title | The Journal of chemical physics |
container_volume | 101 |
creator | Lobe, B. Baschnagel, J. |
description | This Monte Carlo simulation was undertaken to provide some qualitative insight into the dependence of the glass transition of polymer melts on the spatial dimension. To this end, two- and three-dimensional systems were simulated, in which we kept the external conditions, such as the density or the cooling schedule, the same for both dimensions. The melts, simulated by a lattice model (bond-fluctuation model), undergo a kinetic freezing, while being continuously cooled from the equilibrium liquid to the nonequilibrium glassy phase. The resulting glass transition as well as the other simulation results indicate that the spatial constraints are stronger in three than in two dimensions. This finding is reminiscent of the influence of the spatial dimension on the ability of a liquid to crystallize. |
doi_str_mv | 10.1063/1.467782 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_467782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_467782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-2322ed9179494c52d0b84b96978493861722f2e653d9258fe3633b60992e11773</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxIMoWKvgR8jRS-rLnyYbb1K0Fipe9Lyku291JZuUJEV68bO7WvX0YN7MD2YIueQw46DlNZ8pbUwljsiEQ2WZ0RaOyQRAcGY16FNylvM7AHAj1IR8PsZQkC5c8pHmfth5V_oYaOxoeUP66l3OtCQXcv-j94GWj8ioC-1oSIis7QccvzE4T7fR7wdMdEBf8g1dhc7vMDT4h8vbkT76_jPn5KRzPuPF752Sl_u758UDWz8tV4vbNWu4gsKEFAJby41VVjVz0cKmUhurramUlZUeu4hOoJ7L1op51aHUUm40WCuQc2PklFwduE2KOSfs6m3qB5f2NYf6e7ea14fd5BdlJF_d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension</title><source>AIP Digital Archive</source><creator>Lobe, B. ; Baschnagel, J.</creator><creatorcontrib>Lobe, B. ; Baschnagel, J.</creatorcontrib><description>This Monte Carlo simulation was undertaken to provide some qualitative insight into the dependence of the glass transition of polymer melts on the spatial dimension. To this end, two- and three-dimensional systems were simulated, in which we kept the external conditions, such as the density or the cooling schedule, the same for both dimensions. The melts, simulated by a lattice model (bond-fluctuation model), undergo a kinetic freezing, while being continuously cooled from the equilibrium liquid to the nonequilibrium glassy phase. The resulting glass transition as well as the other simulation results indicate that the spatial constraints are stronger in three than in two dimensions. This finding is reminiscent of the influence of the spatial dimension on the ability of a liquid to crystallize.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.467782</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1994-07, Vol.101 (2), p.1616-1624</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-2322ed9179494c52d0b84b96978493861722f2e653d9258fe3633b60992e11773</citedby><cites>FETCH-LOGICAL-c140t-2322ed9179494c52d0b84b96978493861722f2e653d9258fe3633b60992e11773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Lobe, B.</creatorcontrib><creatorcontrib>Baschnagel, J.</creatorcontrib><title>Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension</title><title>The Journal of chemical physics</title><description>This Monte Carlo simulation was undertaken to provide some qualitative insight into the dependence of the glass transition of polymer melts on the spatial dimension. To this end, two- and three-dimensional systems were simulated, in which we kept the external conditions, such as the density or the cooling schedule, the same for both dimensions. The melts, simulated by a lattice model (bond-fluctuation model), undergo a kinetic freezing, while being continuously cooled from the equilibrium liquid to the nonequilibrium glassy phase. The resulting glass transition as well as the other simulation results indicate that the spatial constraints are stronger in three than in two dimensions. This finding is reminiscent of the influence of the spatial dimension on the ability of a liquid to crystallize.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEUxIMoWKvgR8jRS-rLnyYbb1K0Fipe9Lyku291JZuUJEV68bO7WvX0YN7MD2YIueQw46DlNZ8pbUwljsiEQ2WZ0RaOyQRAcGY16FNylvM7AHAj1IR8PsZQkC5c8pHmfth5V_oYaOxoeUP66l3OtCQXcv-j94GWj8ioC-1oSIis7QccvzE4T7fR7wdMdEBf8g1dhc7vMDT4h8vbkT76_jPn5KRzPuPF752Sl_u758UDWz8tV4vbNWu4gsKEFAJby41VVjVz0cKmUhurramUlZUeu4hOoJ7L1op51aHUUm40WCuQc2PklFwduE2KOSfs6m3qB5f2NYf6e7ea14fd5BdlJF_d</recordid><startdate>19940715</startdate><enddate>19940715</enddate><creator>Lobe, B.</creator><creator>Baschnagel, J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940715</creationdate><title>Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension</title><author>Lobe, B. ; Baschnagel, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-2322ed9179494c52d0b84b96978493861722f2e653d9258fe3633b60992e11773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobe, B.</creatorcontrib><creatorcontrib>Baschnagel, J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobe, B.</au><au>Baschnagel, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension</atitle><jtitle>The Journal of chemical physics</jtitle><date>1994-07-15</date><risdate>1994</risdate><volume>101</volume><issue>2</issue><spage>1616</spage><epage>1624</epage><pages>1616-1624</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>This Monte Carlo simulation was undertaken to provide some qualitative insight into the dependence of the glass transition of polymer melts on the spatial dimension. To this end, two- and three-dimensional systems were simulated, in which we kept the external conditions, such as the density or the cooling schedule, the same for both dimensions. The melts, simulated by a lattice model (bond-fluctuation model), undergo a kinetic freezing, while being continuously cooled from the equilibrium liquid to the nonequilibrium glassy phase. The resulting glass transition as well as the other simulation results indicate that the spatial constraints are stronger in three than in two dimensions. This finding is reminiscent of the influence of the spatial dimension on the ability of a liquid to crystallize.</abstract><doi>10.1063/1.467782</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 1994-07, Vol.101 (2), p.1616-1624 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_467782 |
source | AIP Digital Archive |
title | Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts: Influence of the spatial dimension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20of%20the%20glass%20transition%20in%20two-%20and%20three-dimensional%20polymer%20melts:%20Influence%20of%20the%20spatial%20dimension&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lobe,%20B.&rft.date=1994-07-15&rft.volume=101&rft.issue=2&rft.spage=1616&rft.epage=1624&rft.pages=1616-1624&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.467782&rft_dat=%3Ccrossref%3E10_1063_1_467782%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |